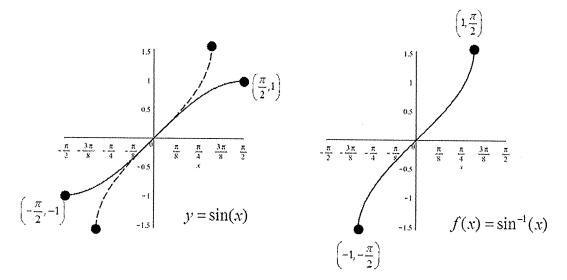
Inverse Trig Functions and Their Derivatives

 $f(x) = \arcsin(x) = \sin^{-1}(x) =$ "the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x."

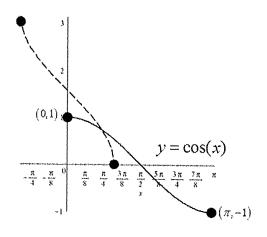
Range:
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

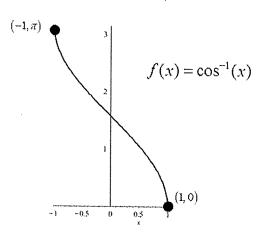


 $f(x) = \arccos(x) = \cos^{-1}(x) =$ "the angle between 0 and π whose cosine is x."

Domain: [-1,1]

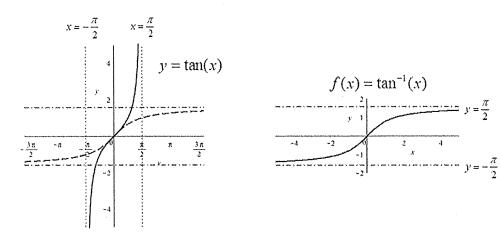
Range:
$$[0,\pi]$$





 $f(x) = \arctan(x) = \tan^{-1}(x) =$ "the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose tan is x."

Domain:
$$[-\infty, \infty]$$
 Range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$



Derivatives of the Inverse Trig Functions

When we talked about the derivative of the logarithm, we argued that if f and f^{-1} are inverse functions, then it ought to be the case that

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

We are now in a position to establish this more rigorously. All pairs of inverse function have the following property:

$$f \circ f^{1}(x) = f(f^{-1}(x)) = x \text{ for all } x$$
.

Since these two functions are equal for all values of x, their derivatives are also equal.

$$\frac{d}{dx}(f(f^{-1}(x))) = \frac{d}{dx}x.$$

The chain rule gives us $f'(f^{-1}(x))(f^{-1})'(x) = 1$. So

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
.

So we can use this formula to deduce the derivatives of the arcsine, the arccosine and the arctangent:

$$\frac{d}{dx}\arcsin(x) = \frac{1}{COS\left(Orcsin(x)\right)}$$

$$\frac{d}{dx}\arccos(x) = \frac{1}{-Sin\left(arccos(x)\right)}$$

$$\frac{d}{dx}\arctan(x) = \frac{1}{Sec^2\left(arctan(x)\right)}$$

The Triangle Trick: As it turns out, we can make these much more user-friendly by using a cool trick. When you have an inverse trig function on the inside and a trig function on the outside, you can rewrite

the expression in a much more usable form. Consider the tollowing example.

Calculate $+\alpha (\sin^{-1}(\sqrt{2}/3))$. First note

that $\theta = \sin^{-1}(\sqrt{2}/3)$ is an angle. We can

place it in side a right thrangle:

Depth of the side 3) By the pythogorean theorem tan (sin-1 (2/3)) = tan (0) = = Caution: this trick assumes that all angles are acute. (It assumes they will fit into a right triangle.) Sometimes we have to worry about the *sign* of the result. For example: cos(tan-'(-3)) (0) 0=tan (-3) is still on angle. So we still out it into a A. We just keep in mind that sides can now have regative length.

1 to 1 ton 0 = -3 so -3 = opposite side; 1 = adj.

1 to 1 ton 0 = -3 so -3 = opposite side; 1 = adj.

1 to 1 ton 0 = -3 so -3 = opposite side; 1 = adj.

1 to 2 use Pythagarean tum. Hyp = ± 10

3 Because ton 0 is negative, -T/2 \(\oppositive \text{0} \) \(\oppositive

Now we can simplify our formulas for the derivatives of the inverse trig functions:

$$\frac{d}{dx}\arcsin(x) = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\cos(6)} = \frac{1}{\sqrt{1-x^2}}$$

$$\sqrt{1-\chi^2}$$

$$\frac{d}{dx}\arccos(x) = -\frac{1}{\sin(\arccos(x))} = -\frac{1}{\sin(6)} = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\arctan(x) = \frac{1}{\sec^2(\arctan(x))} = \frac{1}{\sec^2(\Theta)} = \frac{1}{(\sqrt{1+\chi^2})^2} = \frac{1}{1+\chi^2}$$

So we have some new derivatives:

f(x)	f'(x)
$\arcsin(x) = \sin^{-1}(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos(x) = \cos^{-1}(x)$	$\frac{-1}{\sqrt{1-x^2}}$
$\arctan(x) = \tan^{-1}(x)$	$\frac{1}{1+x^2}$