Inverse Trig Functions

and
[ Their Derivatives
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f(x) =arcsin(x) = sin' (x) = "the angle between 2 and ) whose sine is x."
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f(x) =arccos(x) = cos™ (x) = "the angle between 0 and 7 whose cosine is x."

Domain: [-1,1]

Range: [0,7]
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f(x)=cos™(x)
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f(x) = arctan(x) = tan "' (x) = "the angle between -% and % whose tan is x."

Domain: [0, 0] Range: (~§,%)
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Derivatives of the Inverse Trig Functions

When we talked about the derivative of the logarithm, we argued that if / and f~ are inverse functions,
then it ought to be the case that
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We are now in a position to establish this more rigorously. All pairs of inverse function have the
following property:
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fofi(x)=f(f"(x)=x forallx.

Since these two functions are equal for all values of x, their derivatives are also equal.
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The chain rule gives us f” ( f (x)) (Y (x)=1. So
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So we can use this formula to deduce the derivatives of the arcsine, the arccosine and the arctangent:
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The Triangle Trick: As it turns out, we can make these much more user-friendly by using a cool trick.
When you have an inverse trig function on the inside and a trig function on the outside, you can rewrite
the expression in a much more usable form. Consider the following example'
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Caution: this trick assumes that all angles are acute. (It assumes they will fit into a rlght triangle.)
Sometimes we have to worry about the sign of the result. For example: , -/
coo( Han” (-3 )

@O“HM\ '*3) LOM(I/)’\CMKQ@ So we L pect

PN | kon e = -3 S

@ 7%%/ @@GSMW) '—’V/Z‘-@<O;( K
C@a/wLM /’3))
OTM Cooirar dyin Ao HhioGuidiad s pokes

. 3
= D(6) = =
(&) =



Now we can simplify our formulas for the derivatives of the inverse trig functions:
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So we have some new derivatives:

Jf(x) J'()
arcsin(x) = sin” (x) 1
1-x
arccos(x) = cos™ (x) -1
1-x
arctan(x) = tan™' (x) 1




