S

Area Accumulation Functions and the Fundamental Theorem of Calculus
Homework

1. Suppose f(t)=3. Let A(x)= J:f(t) dt for x=>0.
a. Mark an x>0on a graph of /. Shade the area that corresponds to A4(x) .

f ()L\BJ L1¢)=3

b. Use geometry to help you compute the value of A(x) shown in the diagram in part a.

c. Show that f is, indeed, the derivative of the function you got in part b.

Alx)=3 = F(K)

2. Consider the graph of the function /', shown below. Define two area accumulation functions for

kit

F(x)= If(r) dt on [0,00) and G(x)= If(t) dt on [2,)

a. On the graphs below, add details that give geometric interpretations for F(x) and G(x),
respectively Be sure to label your diagrams so that it is clear what you intend.




@
b. Determine a value of x for which F (x) = 0. Use properties of integrals to justify your choice.
(Hint: Which property shown in Table 5.3 of B&C is relevant here?)

F(0)=§7C(J<)&i‘ = 0
o

¢. Determine a value of x for which G(x) = 0. Briefly, give a reason for your choice.

e = | $ede = 0
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d. On the graph below, show the constant by which ¥ and G differ at some x > 2.
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e. Use properties of integrals to show analytically that F and G differ by this constant.
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3. Suppose f(t)=-2r+3. Let A(x)=| f(t)dr for x>0 and F(x)= Iy () dt for x> % be two
2
different area accumulation functions for 1.

a. Draw two diagrams that illustrate how we get values A(x) = I : f(t) dt: one should show

3
A(x) when 0<x < g and the other should show A4(x) when x > i

Led) = 2443
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b. Use geometry to help you find a formula for A(x) = _[0 f() dt when x>— . Drawa

picture to help you with (and to explain!) your calculation. Label the picture carefully
with information relevant to the calculation.
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c. Use geometry to find a formula for /'(x) = J; S(t) dt . Draw a carefully labeled diagram that
2

helps you (and illustrates!) your calculation.

d. For what values of x is 4(x) = 0? For what values of x is F(x) =0? | =, ~\( % F Sy~ EL
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e. Use the Fundamental Theorem of Calculus to compute a formula for F(x). (Hint: be sure
that the formula you get is 0 at the value you specified in part d.)
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4. Consider the function fand its area accumulation function A(x) = IO\ f(t)dt, shown below:

4

/
(-12) A(x) = jo F(0dt
3,0) \ (3.0)

(13-3)

Answer the following questions about 4. Give a brief explanation for each of your answers.

a. According to the Fundamental Theorem of Calculus, what is the relationship between the

function 4 and the function f/? oo FTCT L {9, U w

A =400

b. On what interval(s) is 4 increasing? On what interval(s) is 4 decreasing?
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c. Does 4 have any local maxima or minima? If so, where?
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d. On what interval(s) is A4 concave up? Oiwhat interval(s) 1sAconcave own" X=§l.o
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