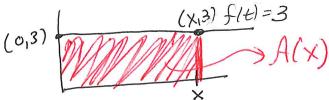
1

Area Accumulation Functions and the Fundamental Theorem of Calculus Homework

- 1. Suppose f(t) = 3. Let $A(x) = \int_0^x f(t) dt$ for $x \ge 0$.
 - a. Mark an x > 0 on a graph of f. Shade the area that corresponds to A(x).



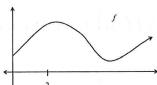
b. Use geometry to help you compute the value of A(x) shown in the diagram in part a.

$$A(x) = 3x$$

c. Show that f is, indeed, the derivative of the function you got in part b.

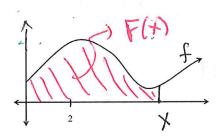
$$A'(x) = 3 = f(x)$$

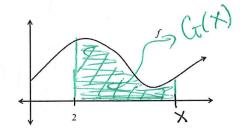
2. Consider the graph of the function f, shown below. Define two area accumulation functions for f:



$$F(x) = \int_{0}^{x} f(t) dt$$
 on $[0, \infty)$ and $G(x) = \int_{2}^{x} f(t) dt$ on $[2, \infty)$

a. On the graphs below, add details that give geometric interpretations for F(x) and G(x), respectively Be sure to label your diagrams so that it is clear what you intend.





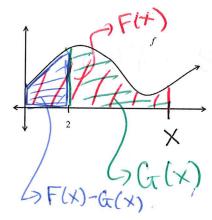
b. Determine a value of x for which F(x) = 0. Use properties of integrals to justify your choice. (Hint: Which property shown in Table 5.3 of B&C is relevant here?)

$$F(o) = \int_{0}^{o} f(t) dt = 0$$

c. Determine a value of x for which G(x) = 0. Briefly, give a reason for your choice.

$$\int_{\overline{A}}^{2} f(t) dt = 0$$

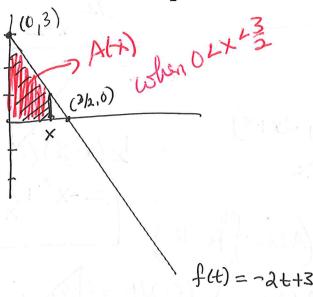
d. On the graph below, show the constant by which F and G differ at some x > 2.

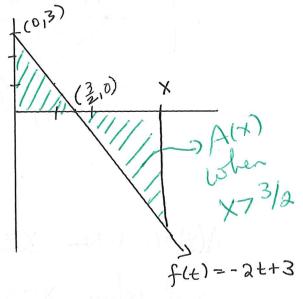


e. Use properties of integrals to show analytically that F and G differ by this constant.

$$F(X) - G(X) = \int_{0}^{X} f(t) dt - \int_{2}^{X} f(t) dt$$
$$= \int_{0}^{2} f(t) dt$$

- 3. Suppose f(t) = -2t + 3. Let $A(x) = \int_0^x f(t) dt$ for $x \ge 0$ and $F(x) = \int_{\frac{3}{2}}^x f(t) dt$ for $x \ge \frac{3}{2}$ be two different area accumulation functions for f.
 - a. Draw two diagrams that illustrate how we get values $A(x) = \int_0^x f(t) dt$: one should show A(x) when $0 \le x < \frac{3}{2}$ and the other should show A(x) when $x > \frac{3}{2}$.





b. Use geometry to help you find a formula for $A(x) = \int_0^x f(t) dt$ when $x > \frac{3}{2}$. Draw a picture to help you with (and to explain!) your calculation. Label the picture carefully with information relevant to the calculation.

$$A(x) = \int_{0}^{x} f(t) dt = \int_{-\frac{3}{2}1}^{x} + \frac{x-3/2}{2} + \int_{-2x+3}^{x} f(x,0)$$

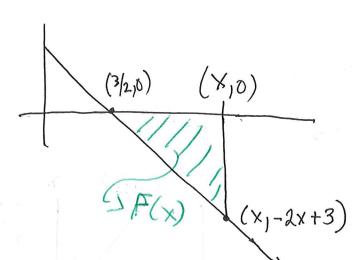
$$(x, -2x+3)$$

$$= \frac{1}{2}(\frac{3}{2})(\frac{3}{3}) + \frac{1}{2}(x-\frac{3}{2})(\frac{2}{2}x+\frac{3}{3})$$

$$= \frac{9}{4} + \frac{1}{2}(-2x^2 + 6x - \frac{9}{2})$$

$$= \frac{9}{4} + x^2 + 3x - \frac{9}{4} = -x^2 + 3x$$

Use geometry to find a formula for $F(x) = \int_{3/2}^{x} f(t) dt$. Draw a carefully labeled diagram that helps you (and illustrates!) your calculation.



$$F(x) = \int_{3/2}^{x} f(t) dt$$

$$= \frac{x-3/2}{-2x+3}$$

d. For what values of x is A(x) = 0? For what values of x is F(x) = 0? $\int -x^2 + 3x - 9$ A(x)=0 when X=0, (A(x)=) fixed (A(x)=0)

and when X=3, $A(3) = \int_{0}^{1} f(t)dt = 3 / (1 + 3/2) = 0$. (A increases from 0 to 3/2 and decreases, there often X = 3/2 (F13/2) = $\int_{a}^{3/2} f(\omega) dt$)

because Fdecreases throughout its domain

e. Use the Fundamental Theorem of Calculus to compute a formula for F(x). (Hint: be sure that the formula you get is 0 at the value you specified in part d.)

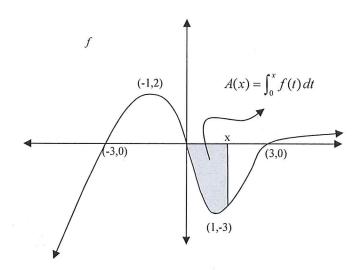
The fund amental theorem of Calculus tells that F(x)= f(x)= -2x +3. We

also know that F(3/2) = 0. $F(x) = -x^2 + 3x + C \notin 0 = F(3/2) = -(3/2)^2 + 3(3/2) + C$

$$S_0 C = \frac{9}{4} - \frac{9}{2} = -\frac{9}{4}$$
. $F(x) = -x^3 + 3x - \frac{9}{4}$

$$F(x) = -x^3 + 3x - \frac{9}{4}$$

Consider the function f and its area accumulation function $A(x) = \int_0^x f(t) dt$, shown below:



Answer the following questions about A. Give a brief explanation for each of your answers.

a. According to the Fundamental Theorem of Calculus, what is the relationship between the function A and the function f? The FTC tells us that

$$A'(x) = f(x)$$
.

b. On what interval(s) is A increasing? On what interval(s) is A decreasing?

A is increasing where A(x) = f(x) G positive This is on [-3,0] and on [3,00). Libewise, A is decreasing when I is Myative: On (-0,3] and on [0,3] Does A have any local maxima or minima? If so, where?

A is concave up where A' of is increasing. on (-00,-1) and on (1,00). A is concave down

on (-1,1) because A'is decreasing there.