A Proof that π is Irrational

The following proof requires no calculus beyond what someone would see in Calc A here at Kenyon or a first high school calculus course. The proof is due in essence to Ivan Niven; I've based this presentation on an outline by Helmut Richter.

Theorem: π is irrational.

Proof: Assume for the sake of a contradiction that $\pi = \frac{a}{b}$ for whole numbers a and b.

We are going to proceed – for reasons that will be clear by the end, but not much before – by defining a function dependent on a number n. What that number n is doesn't matter for now. The initial portions of the argument work for any whole number n, and we'll figure out what particular n we wanted later. (There will eventually be a fraction with an n in the denominator that we want to make small, so we'll be choosing any n big enough to accomplish this task.)

For now, whatever n is, define the function f to be: $x^n(a-bx)^n$

$$f(x) = \frac{x^n(a-bx)}{n!}$$

where $\pi = \frac{a}{b}$ and n! is "n factorial," $n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$.

Finally, a bit of notation: Well use the notation $f^{(j)}(x)$ to denote the j^{th} derivative of f(x), so $f^{(2)}(x) = f''(x)$ and $f^{(17)}(x)$ would be the 17^{th} derivative of f(x).

We're going to start by observing a few facts about f:

- Fact 1: $0 \le f(x) \le \frac{\pi^n a^n}{n!}$ if $0 \le x \le \pi$.
- Fact 2: f is a polynomial with integer coefficients, except for the factor of $\frac{1}{r!}$
- Fact 3: $f(x) = f(\pi x)$.
- Fact 4: For any derivative $f^{(j)}(x)$, we have that $f^{(j)}(x) = (-1)^j f^{(j)}(\pi x)$. So in particular, $f^{(j)}(0) = (-1)^j f^{(j)}(\pi)$.
- Fact 5: If j < n, $f^{(j)}(0) = 0$.
- Fact 6: If $n \le j \le 2n$, then $f^{(j)}(0)$ is an integer.
- Fact 7: If j < n, $f^{(j)}(\pi) = 0$ and if $n \le j \le 2n$, $f^{(j)}(\pi)$ is an integer.
- Fact 8: If j > 2n, $f^{(j)}(x) = 0$.

Now we take a break from the facts for a moment to define a new function $g(x) = f(x) - f''(x) + f^{(4)}(x) - f^{(6)}(x) + \dots + (-1)^j f^{(2j)}(x) + \dots + (-1)^n f^{(2n)}(x)$. Back to the facts:

- Fact 9: g(0) and $g(\pi)$ are integers.
- Fact 10: g(x) + g''(x) = f(x).
- Fact 11: $\frac{d}{dx}[g'(x)\sin(x) g(x)\cos(x)] = f(x)\sin(x).$
- Fact 12: $\int_0^{\pi} f(x) \sin(x) \, dx = g(0) + g(\pi).$

Putting Facts 9 and 12 together, we see that $\int_0^{\pi} f(x) \sin(x) dx$ is an integer. We'll work as a group to put all of this together to find a contradiction.