Probability and Number Theory: an Overview of the Erdős-Kac Theorem

Alex Beckwith

December 12, 2012
Probabilistic number theory?

Pick \(n \in \mathbb{N} \) with \(n \leq 10,000,000 \) at random.
- How likely is it to be prime?
- How many prime divisors will it have?
The prime divisor counting function ω

Definition

The function $\omega : \mathbb{N} \to \mathbb{N}$ defined by

$$\omega(n) := \sum_{\{p : p | n\}} 1$$

is called the **prime divisor counting function**; $\omega(n)$ yields the number of distinct prime divisors of n.

Alex Beckwith

Probability and Number Theory: an Overview of the Erdős-Kac Theorem
The prime divisor counting function ω

Definition
The function $\omega : \mathbb{N} \to \mathbb{N}$ defined by

$$\omega(n) := \sum_{\{p : p | n\}} 1$$

is called the **prime divisor counting function**; $\omega(n)$ yields the number of distinct prime divisors of n.

<table>
<thead>
<tr>
<th>n</th>
<th>prime factorization</th>
<th>$\omega(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$2 \cdot 3$</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>$2 \cdot 3 \cdot 5$</td>
<td>2</td>
</tr>
<tr>
<td>1872</td>
<td>$2^3 \cdot 3 \cdot 7^2$</td>
<td>3</td>
</tr>
<tr>
<td>2012</td>
<td>$2^2 \cdot 503$</td>
<td>2</td>
</tr>
</tbody>
</table>
The prime divisor counting function ω

Definition
The function $\omega : \mathbb{N} \to \mathbb{N}$ defined by

$$\omega(n) := \sum_{\{p : p | n\}} 1$$

is called the **prime divisor counting function**; $\omega(n)$ yields the number of distinct prime divisors of n.

<table>
<thead>
<tr>
<th>n</th>
<th>prime factorization</th>
<th>$\omega(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$2 \cdot 3$</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>$2 \cdot 3$</td>
<td></td>
</tr>
<tr>
<td>1872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The prime divisor counting function ω

Definition
The function $\omega: \mathbb{N} \to \mathbb{N}$ defined by

$$\omega(n) := \sum_{\{p:p|n\}} 1$$

is called the **prime divisor counting function**; $\omega(n)$ yields the number of distinct prime divisors of n.

<table>
<thead>
<tr>
<th>n</th>
<th>prime factorization</th>
<th>$\omega(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$2 \cdot 3$</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>$2 \cdot 3$</td>
<td>2</td>
</tr>
<tr>
<td>1872</td>
<td>$2 \cdot 3$</td>
<td>2</td>
</tr>
<tr>
<td>2012</td>
<td>$2 \cdot 3$</td>
<td>2</td>
</tr>
</tbody>
</table>
The prime divisor counting function ω

Definition

The function $\omega : \mathbb{N} \to \mathbb{N}$ defined by

$$\omega(n) := \sum_{\{p : p | n\}} 1$$

is called the **prime divisor counting function**; $\omega(n)$ yields the number of distinct prime divisors of n.

<table>
<thead>
<tr>
<th>n</th>
<th>prime factorization</th>
<th>$\omega(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$2 \cdot 3$</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>$2 \cdot 3 \cdot 5$</td>
<td>3</td>
</tr>
<tr>
<td>1872</td>
<td>$2^4 \cdot 3^2 \cdot 13$</td>
<td>3</td>
</tr>
<tr>
<td>2012</td>
<td>$2^2 \cdot 503$</td>
<td>2</td>
</tr>
</tbody>
</table>
An Illustration

\[\omega(n) \]

$\in \mathbb{N}$

Alex Beckwith
Probability and Number Theory: an Overview of the Erdős-Kac Theorem
An Illustration

\[N \in \mathbb{N} \]

\[\{ n \leq N : \omega(n) \leq x \} \]

\[N = 50 \]

\[
\begin{array}{cccccccc}
0.0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 1.0
\end{array}
\]
An Illustration

\[
N \in \mathbb{N} \quad \rightarrow \quad x
\]

\[
\# \{ n \leq N : \omega(n) \leq x \}
\]

\[
N = 50
\]

Alex Beckwith
Probability and Number Theory: an Overview of the Erdős-Kac Theorem
The Erdős-Kac Theorem

Theorem

Let $N \in \mathbb{N}$. Then as $N \to \infty$,

$$
\nu_N \left\{ n \leq N : \frac{\omega(n) - \log \log N}{\sqrt{\log \log N}} \leq x \right\} = \Phi(x).
$$

That is, the limit distribution of the prime-divisor counting function $\omega(n)$ is the normal distribution with mean $\log \log N$ and variance $\log \log \log N$.
An Illustration
An Illustration
The Erdős-Kac Theorem

Heuristically:

1. Most numbers near a fixed $N \in \mathbb{N}$ have $\log \log N$ prime factors (Hardy and Ramanujan, Turán).
Heuristically:

1. Most numbers near a fixed \(N \in \mathbb{N} \) have \(\log \log N \) prime factors (Hardy and Ramanujan, Turán).

2. Most prime factors of most numbers near \(N \) are small.
The Erdős-Kac Theorem

Heuristically:

1. Most numbers near a fixed $N \in \mathbb{N}$ have $\log \log N$ prime factors (Hardy and Ramanujan, Turán).

2. Most prime factors of most numbers near N are small.

3. The events “p divides n, with p a small prime, are roughly independent (Brun sieve).
The Erdős-Kac Theorem

Heuristically:

1. Most numbers near a fixed $N \in \mathbb{N}$ have $\log \log N$ prime factors (Hardy and Ramanujan, Turán).

2. Most prime factors of most numbers near N are small.

3. The events “p divides n, with p a small prime, are roughly independent (Brun sieve).

4. If the events were exactly independent, a normal distribution would result.
Erdős-Kac vs. Central Limit Theorem

Theorem

Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables, each having mean μ and variance σ^2. Then the distribution of

$$\frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}}$$

tends to the standard normal as $n \to \infty$.

By ν_N we denote the probability law of the uniform distribution with weight $\frac{1}{N}$ on $\{1, 2, \ldots, N\}$. That is, for $A \subset \mathbb{N}$,

$$\nu_N A = \sum_{n \in A} \lambda_n \quad \text{with} \quad \lambda_N = \begin{cases} \frac{1}{N} & n \leq N \\ 0 & n > N. \end{cases}$$
We say that a sequence \(\{F_n\} \) of distribution functions \textit{converges weakly} to a function \(F \) if
\[
\lim_{n \to \infty} F_n(x) = F(x)
\]
for all points where \(F \) is continuous.
Limiting distributions

Let \(f \) be an arithmetic function. Let \(N \in \mathbb{N} \). Define

\[
F_N(z) := \nu_N\{ n : f(n) \leq z \} = \frac{1}{N} \#\{ n \leq N : f(n) \leq z \}.
\]

We say that \(f \) possess a **limiting distribution function** \(F \) if the sequence \(F_N \) converges weakly to a limit \(F \) that is a distribution function.
Limiting distributions

Let f be an arithmetic function. Let $N \in \mathbb{N}$. Define

$$F_N(z) := \nu_N\{n : f(n) \leq z\} = \frac{1}{N} \#\{n \leq N : f(n) \leq z\}.$$

We say that f possess a **limiting distribution function** F if the sequence F_N converges weakly to a limit F that is a distribution function.
Characteristic functions

Definition
Let F be a distribution function. Then its characteristic function is given by

$$\varphi_F(\tau) := \int_{-\infty}^{\infty} \exp(i\tau z) dF(z).$$

The characteristic function is uniformly continuous on the real line.

Fact: A distribution function is completely characterized by its characteristic function.

Lemma
The characteristic function of the standard normal distribution Φ is given by

$$\varphi_{\Phi}(\tau) = \exp\left(-\frac{\tau^2}{2}\right).$$
Characteristic functions

Definition
Let F be a distribution function. Then its characteristic function is given by

$$\varphi_F(\tau) := \int_{-\infty}^{\infty} \exp(i\tau z) dF(z).$$

The characteristic function is uniformly continuous on the real line.

Fact: A distribution function is completely characterized by its characteristic function.
Characteristic functions

Definition
Let F be a distribution function. Then its characteristic function is given by

$$\varphi_F(\tau) := \int_{-\infty}^{\infty} \exp(i\tau z) dF(z).$$

The characteristic function is uniformly continuous on the real line.

Fact: A distribution function is completely characterized by its characteristic function.

Lemma
The characteristic function of the standard normal distribution Φ is given by

$$\varphi_\Phi(\tau) = \exp\left(-\frac{\tau^2}{2}\right).$$
Levy’s continuity theorem

Theorem
Let \(\{F_n\} \) be a sequence of distribution functions and \(\{\varphi_{F_n}\} \) be the corresponding sequence of their characteristic functions. Then \(\{F_n\} \) converges weakly to a distribution function \(F \) if and only if \(\varphi_{F_n} \) converges pointwise on \(\mathbb{R} \) to a function \(\varphi \) that is continuous at 0. Additionally, in this case, \(\varphi \) is the characteristic function of \(F \).
Theorem

Let $N \in \mathbb{N}$. Then as $N \to \infty$,

$$
\nu_N \left\{ n \leq N : \frac{\omega(n) - \log \log N}{\sqrt{\log \log N}} \leq x \right\} = \Phi(x).
$$

That is, the limit distribution of the prime-divisor counting function $\omega(n)$ is the normal distribution with mean $\log \log N$ and variance $\log \log N$.
A proof sketch

The atomic distribution function for $N \in \mathbb{N}$ is

$$F_N(x) = \nu_N \left\{ n \leq N : \frac{\omega(n) - \log \log N}{\sqrt{\log \log N}} \leq x \right\}$$

$$= \frac{1}{N} \# \left\{ n \leq N : \frac{\omega(n) - \log \log N}{\sqrt{\log \log N}} \leq x \right\}.$$

We denote by $\varphi_{F_N}(\tau)$ the characteristic function of F_N. We have

$$\varphi_{F_N}(\tau) = \int_{-\infty}^{\infty} e^{i\tau z} dF_N(z)$$

Let $P = \{ \cdots < x_{-1} < x_0 < x_1 < \cdots < x_i \cdots \}$ be a partition of \mathbb{R}. Then we have $\varphi_{F_N}(\tau)$ equal to
A proof sketch continued

\[
\begin{align*}
&= \int_{-\infty}^{\infty} e^{i\tau z} dF_N(z) \\
&= \lim_{\text{mesh}(P) \to 0} \sum_k e^{i\tau z} (F_N(x_k) - F_N(x_{k-1})) \\
&= \lim_{\text{mesh}(P) \to 0} \sum_k e^{i\tau z} \left(\frac{1}{N} \# \{ n \leq N : f(n) \leq x_k \} - \frac{1}{N} \# \{ n \leq N : f(n) \leq x_{k-1} \} \right) \\
&= \frac{1}{N} \left[\lim_{\text{mesh}(P) \to 0} \sum_k e^{i\tau z} \left(\# \{ n \leq N : f(n) \leq x_k \} - \# \{ n \leq N : f(n) \leq x_{k-1} \} \right) \right] \\
&= \frac{1}{N} \max\{\omega(n) : n \leq N\} \sum_{k=0}^{\max\{\omega(n) : n \leq N\}} e^{i\tau f(n)} \\
&= \frac{1}{N} \sum_{n \leq N} e^{i\tau f(n)}
\end{align*}
\]
A proof sketch continued

Next, we find some bounds for $\varphi_{F_N}(\tau)$:

$$
\varphi_{F_N}(\tau) = \exp \left(-\frac{\tau^2}{2} \right) \left(1 + O \left(\frac{|\tau| + |\tau|^3}{\sqrt{\log \log N}} \right) \right) + O \left(\frac{1}{\log N} \right).
$$

(Informally, we write $f(x) = O(g(x))$ when there exists a positive function g such that f does not grow faster than g.)
A proof sketch continued

Next, we find some bounds for $\varphi_{F_N}(\tau)$:

$$
\varphi_{F_N}(\tau) = \exp \left(-\frac{\tau^2}{2} \right) \left(1 + O \left(\frac{|\tau| + |\tau|^3}{\sqrt{\log \log N}} \right) \right) + O \left(\frac{1}{\log N} \right).
$$

(Informally, we write $f(x) = O(g(x))$ when there exists a positive function g such that f does not grow faster than g.)

Take the limit as $N \to \infty$:

$$
\varphi_{F_N}(\tau) \to \exp \left(-\frac{\tau^2}{2} \right) = \varphi_\Phi(\tau).
$$
A proof sketch continued

In other words, the sequence of characteristic functions φ_{F_N} converges pointwise to the characteristic function of the normal distribution.

Apply Levy's continuity theorem:

$$\nu_{N}\{n \leq N: \omega(n) - \log \log N \leq x \}\right\} = \Phi(x).$$

Thus, the limit distribution of the prime-divisor counting function $\omega(n)$ is the normal distribution with mean $\log \log N$ and variance $\log \log N$. This completes the proof.
A proof sketch continued

In other words, the sequence of characteristic functions φ_{F_N} converges pointwise to the characteristic function of the normal distribution.

Apply Levy’s continuity theorem:

$$\nu_N \left\{ n \leq N : \frac{\omega(n) - \log \log N}{\sqrt{\log \log N}} \leq x \right\} = \Phi(x).$$

Thus, the limit distribution of the prime-divisor counting function $\omega(n)$ is the normal distribution with mean $\log \log N$ and variance $\log \log N$. This completes the proof.
An Illustration

Probability and Number Theory: an Overview of the Erdős-Kac Theorem
References

- Gowers, T. *The Importance of Mathematics.*
Probability and Number Theory: an Overview of the Erdős-Kac Theorem