Exam 2

Math 224: Linear Algebra

100 points

Name:

10/16/2001

• You must show all work to receive full credit.

1. (10) Express the matrix $\begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ as a product of elementary matrices. Show or explain

how you arrived at your choice of elementary matrices.

2. (10) If A and B are appropriately sized symmetric matrices, determine if each of the following are symmetric.

(a) A - 2B

(b) A^T

(c) AB

- (d) B^{-1} , provided it exists of course.
- (d) $A^{-1}A$, provided A^{-1} exists of course.

3. (12) Find the determinants using the method of your choosing. (Some methods may be better than others.)

(a)
$$\begin{vmatrix} 2 & -12 & 8 \\ 2 & 5 & 9 \\ -1 & 6 & -2 \end{vmatrix}$$

(b)
$$\begin{vmatrix} 2 & 4 & 2 & 0 \\ 7 & 6 & 7 & 4 \\ -3 & 0 & 0 & 0 \\ 1 & -2 & 1 & 9 \end{vmatrix}$$

(c)	1	1	1	1	1	1
	1	2	1	1	1	1
	1	3	2	1	1	1
	1	4	3	2	1	1
	1	5	4	3	2	1
	1	6	5	4	3	2

4. (6) Consider the matrix $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ and assume that |A| = 3. Determine the following:

(a)
$$\begin{vmatrix} 3a & 3b & 3c \\ -d & -e & -f \\ 2g & 2h & 2i \end{vmatrix}$$

(b)
$$\begin{vmatrix} a & g & d \\ b & h & e \\ c & i & f \end{vmatrix}$$

(c)
$$\begin{vmatrix} a & b & c \\ 2d - a & 2e - b & 2f - c \\ g - 3a & h - 3b & i - 3c \end{vmatrix}$$

5. (12) Find the following determinants if A and B are $n \times n$ matrices such that |A| = 5 and |B| = 3.

(a) $|AB^2|$

(b) $|(A^{-1})(2B)|$

(c) $|(A^T B)^{-1}|$

(d) |Adj(B)|

6. (8) If $A^{-1} = A^T$, then find all possible values of |A|.

7. (12) Use Cramer's Rule to find y for the system

$$x - 2y - z = 1$$
$$x + z = 4$$
$$2x - y - 2z = 2$$

8. (10) Prove that if A, B, and P are $n \times n$ matrices with P invertible and $A = PBP^{-1}$ then |A| = |B|.

9. (20) Given
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 5 \\ 1 & 0 & 0 & 7 \end{pmatrix}$$
 find the matrix of cofactors for A and A^{-1} if it exists.