Math 224 Writing Project: Markov Chains
For this assignment, you will write a short (5-10 page) paper
investigating the application of linear algebra to Markov chains
(Section 1.7 in our textbook).
Your paper should contain the following components:
- The definition of a Markov chain.
- The definition of a transition matrix.
- The definitions of a regular transition matrix and a regular chain.
- A discussion of steady states.
- An argument that 1 is an eigenvalue of the transition matrix for any Markov chain.
- Examples of Markov chains and transition matrices.
- Applications of Markov chains to population distributions and/or
other models of situations in biology, business, chemistry,
engineering, economics, physics, or elsewhere.
Your first task in this project is to work out the mathematical
details of Markov chains, and the second is to make sense of those
details and organize them in a coherent written narrative. Your final
paper may include symbols, computations, graphs, and matrices; however,
these will need to be accompanied by generous verbal explanations that
explain the mathematical ideas. You will be graded both on mathematical
accuracy and written clarity. You must cite any sources that you use in
proper bibliographic format.
You can find information on Markov chains in our textbook
(Section 1.7), in the standard reference texts that I've posted on the General Information
page, or by searching for information on the internet and/or in the
library. Again, you must cite any sources that you use in proper
bibliographic format.
Your final paper must be turned in by Tuesday, December 11
(the last day of class). Note that this is a later deadline than I had
originally stated, though you are of course welcome (and encouraged) to
turn in your paper early.