Name
 Spring 2009 - Brad Hartlaub

Directions: Please answer all of the questions below. The point values for each problem are indicated in parentheses. Partial credit will be awarded if you show your work. Be careful not to spend too much time on any one part. You may not use any notes or the text, but you can use our course web page and Minitab software.

1. The table below gives some situational OBPs for Rickey Henderson in the 1999 baseball season. This table shows how Rickey did for day and night games, for games home and away, for games played on grass and turf fields, for games played in domed and open ballparks, and against left- and right-handed pitchers. The data are also provided in P:\DatalMath\Hartlaub\SportsStats\RickeyHenderson.mtw.

a. For each breakdown, compute the number of (approximate) plate appearances (PA). (10)

$$
\text { see Column } 4 \text { in the table above. }
$$

b. Let $p_{d a y}$ denote Rickey's on-base probability when he is playing a day game and let $p_{\text {night }}$ denote his on-base probability when he's playing at night. Using the appropriate data, construct a 95% confidence interval for the difference between $p_{\text {day }}$ and $p_{\text {night }}$. Can you conclude that Rickey really has a higher on-base probability at night games? Explain. (20)
 in the 95% CI day we cannot conduce that Rickey has a by her on base percentage at ny bt
c. Using the same method as in (b), compare the home/away OBPs, the grass/turf OBPs, the dome/open OBPs, and the right/left OBPs. Be sure to identify the appropriate parameters for each situation. ($40-10$ each situation). Use Stat $>$ basic Statistics >2 Proportions

The parameters for each situation are ide pitied by the subscripts as in part b. For example, Home $=$ his on-base probability when he is playing at home.

HomelAway $95 \%<1$ for Phone - Away Grass/Turf 95% CI for Grass ticurff 5

$$
\text { is }(-.170264,-.000676040) \text { since }
$$

$$
(-.191963, .028834) \text { since zero }
$$

zero is not in the 95% II we have significant evidence that Rickey's OBP is higher when he plays away games.

Dome/Open $95 \% 11$ for Dome - Open is $(-.0875032, .195782)$. Since zero is include in the 95% CI, we do not have evidence that Rickey's on-hase probability differs in domes and open stadiums.
 statistics for a sample of 20 players in the 2008 season. The first column gives the name of the player, the next three columns give the number of at-bats, hits, and batting average for all games played at home, and the next three columns give the number of at-bats, hits, and batting average for all games played away from home. Does this sample provide significant evidence that players generally hit better at home? If so, by how much on the average? Provide a complete statistical justification. (30)

the same players are examined at home and away, a

$$
\begin{aligned}
& \text { paired t test or internal nus be used Let } \\
& \text { dit }=\text { Home- Avg - away Hug for each player we } \\
& \text { are interested in } \\
& \text { in } \\
& \text { \% / d } 1 / 1 \text { d } \\
& \begin{array}{l}
t=1.49 \text { f-value }=.077 \text { since } .077>.05 \text {, we cannot } \\
\text { respect to and we conclude that the hitters do not } \\
\text { generally do better at home. The estimated mean } \\
\text { difference is } \bar{x}_{d}=.0166 \text { and a } 95 \% \text { CI tor Me is } \\
(-0068.04 \text { which includes zero. }
\end{array} \\
& c_{\text {true mean difference (高, away) }}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
t=1.49 \text { f-value }=.077 \text { since } .077>.05 \text { we cannot } \\
\text { reject Ho and we conclude that the sifters do not } \\
\text { generally do better at one. The estimated mean } \\
\text { difference is } \bar{x}_{d}=.0166 \text { and a } 95 \% \text { CI tor Me is } \\
(-.0068 .04) \text { which includes zero. }
\end{array} \\
& \% \cdot L_{c}=0 \mathrm{us} \\
& H_{1}: M_{d}=0
\end{aligned}
$$

