
Generating Functions

Generating functions possess a beautiful and rich theory as well as powerful utility. Entire
books are written and graduate courses are offered on the topic, so we’ll only scratch the
surface this evening in our introduction to generating functions. If you want to study further,
I recommend you look at the book Generatingfunctionology by Herbert S. Wilf. One of the
most important uses of generating functions is in solving recursion problems, and that will
be our focus tonight. Once you get the hang of this method, I guarantee you’ll see how fun
and addicting these problems can be. HAVE FUN!

Definition Suppose (an) is a sequence of numbers for n = 0, 1, 2, .... The ordinary gen-
erating function A(x) for the sequence (an) is the power series

A(x) =
∞∑

n=0

anxn .

The exponential generating function for (an) is the series

B(x) =
∞∑

n=0

anxn

n!
.

Skeleton of the Method

1. Recurrence relation:

an+1 = 3an + 5 , n ≥ 0, a0 = 1 .

2. Convert to series:
∞∑

n=0

an+1x
n =

∞∑
n=0

3anxn +
∞∑

n=0

5xn, a0 = 1 .

3. Express in terms of generating function A(x):

1
x

[A(x)− 1] = 3A(x) +
5

1− x
.

4. Isolate A(x) via algebra:

A(x) =
1 + 4x

(1− x)(1− 3x)
.

5. Invert A(x) back into the world of power series:

A(x) =
∞∑

n=0

(
7
2
3n − 5

2

)
xn .

6. Extract from A(x) the coefficients an:

an =
7
2
3n − 5

2
.



Cast of Common Characters

1
1− x

=
∞∑

n=0

xn

1
(1− x)2

=
d

dx

(
1

1− x

)
=

∞∑
n=0

nxn−1

2
(1− x)3

=
d2

dx2

(
1

1− x

)
=

∞∑
n=0

n(n− 1)xn−2

1
1− θx

=
∞∑

n=0

θnxn , θ 6= 0

θ

(1− θx)2
=

d

dx

(
1

1− θx

)
=

∞∑
n=0

nθnxn−1 , θ 6= 0

exp(x) = 1 + x +
x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!

exp(θx) = 1 + θx +
θ2x2

2!
+

θ3x3

3!
+ · · · =

∞∑
n=0

θnxn

n!
( ∞∑

k=0

akxk

)
·



∞∑

j=0

bjx
j


 =

∞∑
n=0

cnxn where cn =
n∑

k=0

akbn−k



Good Practice Problems on Generating Functions

1. Find a closed-form formula for the terms in the sequence (an) if this sequence is defined
by the following recurrence relation

an+1 = 2an + 4n , n = 0, 1, 2, ..., a0 = 1.

2. Find a formula in terms of n of the general term rn for the sequence defined by the
recurrence relation

rn+1 = rn + n + 1 , n = 0, 1, 2, ..., r0 = 1 .

3. Derive a formula in terms of n for the general term wn for the sequence defined by the
recurrence relation

wn = 3wn−1 + 2wn−2 , n ≥ 2 ,

with initial values w0 = 1, and w1 = 3.

4. Consider the sequence (tn) determined by the recursive definition

tn+1 = 3tn − tn−1 , n = 1, 2, 3, ..., t0 = 0, t1 = 1 .

(a) Find an explicit formula for tn in terms of n for n = 0, 1, 2, ....

(b) Show that for large n, tn ≈ C · bn, where C and b are real constants, and determine
the values of C and b.

5. Consider the following recurrence relation

an+1 = nan + 2 , n = 0, 1, 2, ..., a0 = 1.

(a) Find a closed-form formula for an.

(b) Show that for large n
an ≈ α(n− 1)! ,

and find the value of the constant α.

6. A derangement of n objects is a permutation of the objects that leaves no object in
its original position. The number of possible derangements on a set of n items follows the
recurrence

dn+1 = n(dn−1 + dn) , n ≥ 1 , d0 = 1, d1 = 0 .

(a) Find a formula for dn in terms of n.

(b) If n objects are permuted at random, then the probability of a derangement is given
by dn/n!. Evaluate

lim
n→∞

dn

n!
,

whose value is the asymptotic probability that when n objects are permuted, that none of
them remain in their original position.



7. Government A sends secret messages to its ally Government B in the form of codewords.
Suppose a codeword of length n is a sequence of n digits with each digit being an element
of the set {0, 1, 2, 3, 4, 5}. As a small measure of security, consider a codeword legitimate if
and only if there are an even number of 0’s in the word (consider a codeword containing no
0’s as legitimate.) Therefore, 0000, 1050, and 5423 are all legitimate codewords of length
four, while 4035 is not legitimate. Illegitimate words are ignored by the intended receiver
as noise, but their presence will confuse spies and eavesdroppers. Let an denote the number
of possible legitimate codewords of length n that can be formed using this code scheme.

(a) If we set a0 = 1 by convention, show that

an+1 = 4an + 6n , n = 0, 1, 2, ..., a0 = 1

is a recurrence relation for an.

(b) Derive a formula for an as a function of n.

8. Let bn = 12 + 22 + 32 + · · · + n2 denote the sum of the first n squares. The sequence
(bn) naturally satisfies the recurrence relation

bn+1 = bn + (n + 1)2 , n = 0, 1, 2, ..., b0 = 0.

(a) Show that the ordinary generating function for the sequence (bn) is

B(x) =
x(1 + x)
(1− x)4

.

(b) By inverting the generating function B(x), find a closed-form formula for bn.

9. Consider a binary random number generator which ouputs a string of n 0’s and 1’s,
where each digit in the string is equally likely to be a 0 or 1, independent of other digits
in the string. For example, if this random string of digits were to be observed after twenty
digits generated, we might observe the following random binary sequence,

00001101101111100011 .

Find the probability that after n digits have been generated, the resulting binary string has
no two 1’s in a row?


