Math 333
 Higher Order Linear Differential Equations Nonhomogeneous Equations: The Method of Undetermined Coefficients

Recall that the general solution of the nonhomogeneous n-th order linear differential equation

$$
y^{(n)}+p_{1}(t) y^{(n-1)}+\cdots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=g(t)
$$

is given by the sum

$$
y_{h}(t)+y_{p}(t)
$$

where $y_{h}(t)$ is the general solution of the associated homogeneous equation

$$
y^{(n)}+p_{1}(t) y^{(n-1)}+\cdots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=0
$$

and $y_{p}(t)$ is one particular solution of the nonhomogeneous equation. Using the method of the characteristic polynomial, we have seen how to find $y_{h}(t)$ for the case in which the differential equation has constant coefficients:

$$
a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=0
$$

We can obtain a particular solution $y_{p}(t)$ of the nonhomogeneous n-th order linear differential equation using the method of undetermined coefficients, provided that $g(t)$ is of an appropriate form.

Examples.

1. Find the general solution of the differential equation

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=4 e^{t} .
$$

Solution. The general solution of the associated homogeneous equation is

$$
y_{h}(t)=c_{1} e^{t}+c_{2} t e^{t}+c_{3} t^{2} e^{t} .
$$

To find a particular solution $y_{p}(t)$, we start by assuming that $y_{p}(t)$ is of the form $y_{p}(t)=\alpha e^{t}$. However, since e^{t}, $t e^{t}$, and $t^{2} e^{t}$ are all solutions of the homogeneous equation, we must multiply our initial choice by t^{3}. Thus, our final assumption is that $y_{p}(t)$ is of the form

$$
y_{p}(t)=\alpha t^{3} e^{t}
$$

Substituting y_{p} and its derivatives into the differential equation and equating terms, we obtain $\alpha=2 / 3$. Thus, the general solution of the differential equation is

$$
y(t)=c_{1} e^{t}+c_{2} t e^{t}+c_{3} t^{2} e^{t}+\frac{2}{3} t^{3} e^{t}
$$

2. Find the general solution of the differential equation

$$
y^{(4)}+2 y^{\prime \prime}+y=3 \sin t-5 \cos t
$$

Solution. The general solution of the associated homogeneous equation is

$$
y_{h}(t)=c_{1} \cos t+c_{2} \sin t+c_{3} t \cos t+c_{4} t \sin t
$$

Our initial assumption for a particular solution is $y_{p}(t)=\alpha \sin t+\beta \cos t$, but we must multiply this initial choice by t^{2}. Thus, our final assumption is that $y_{p}(t)$ is of the form

$$
y_{p}(t)=\alpha t^{2} \sin t+\beta t^{2} \cos t
$$

Substituting y_{p} and its derivatives into the differential equation and equating terms, we obtain $\alpha=-3 / 8$ and $\beta=5 / 8$. Thus, the general solution of the differential equation is

$$
y(t)=c_{1} \cos t+c_{2} \sin t+c_{3} t \cos t+c_{4} t \sin t+\frac{-3}{8} t^{2} \sin t+\frac{5}{8} t^{2} \cos t
$$

3. Find the general solution of the differential equation

$$
y^{\prime \prime \prime}-4 y^{\prime}=t+3 \cos t+e^{-2 t}
$$

Solution. The general solution of the associated homogeneous equation is

$$
y_{h}(t)=c_{1}+c_{2} e^{2 t}+c_{3} e^{-2 t}
$$

Recall that we can write a particular solution of the differential equation as a sum of particular solutions of the differential equations

$$
\begin{aligned}
y^{\prime \prime \prime}-4 y^{\prime} & =t \\
y^{\prime \prime \prime}-4 y^{\prime} & =3 \cos t \\
y^{\prime \prime \prime}-4 y^{\prime} & =e^{-2 t}
\end{aligned}
$$

Our initial choice for a particular solution of the first equation is $y_{1}(t)=A t+B$, but since a constant is a solution of the homogeneous equation, we multiply by t. Thus, we choose

$$
y_{1}(t)=A t^{2}+B t
$$

For the second equation, we choose

$$
y_{2}(t)=C \cos t+D \sin t
$$

For the third equation, we choose

$$
y_{3}(t)=E t e^{-2 t}
$$

We obtain $A=-1 / 8, B=0, C=0, D=-3 / 5$, and $E=1 / 8$. Thus, the general solution of the differential equation is

$$
y(t)=c_{1}+c_{2} e^{2 t}+c_{3} e^{-2 t}-\frac{1}{8} t^{2}-\frac{3}{5} \sin t+\frac{1}{8} t e^{-2 t} .
$$

