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Math 333
Higher Order Linear Differential Equations

The theoretical structure and methods of solution that we developed for second order
linear differential equations extend directly to linear differential equations of third
and higher order.

Definition. An n-th order linear differential equation is a differential equation of
the form

P0(t)
dny

dtn
+ P1(t)

dn−1y

dtn−1
+ · · ·+ Pn−1(t)

dy

dt
+ Pn(t)y = G(t). (1)

We assume that the functions P0, P1, . . . , Pn, and G(t) are continuous real-valued
function on some interval I and that P0 is nowhere zero in this interval. Then,
dividing Eqn. (1) by P0(t), we obtain

dny

dtn
+ p1(t)

dn−1y

dtn−1
+ · · ·+ pn−1(t)

dy

dt
+ pn(t)y = g(t). (2)

Since the differential equation in Eqn. (2) involves the n-th derivative of y with
respect to t, it will require n integrations to solve Eqn. (2). Each of these integrations
introduces an arbitrary constant, so the general solution of Eqn. (2) will contain n
arbitrary constants. Thus, to obtain a unique solution, it is necessary to specify n
initial conditions

y(t0) = y0, y′(t0) = y′0, . . . , y
(n−1)(t0) = y

(n−1)
0 , (3)

where t0 may be any point in the interval I.

Theorem: Existence and Uniqueness of Solutions. If the functions p1, p2, . . . , pn,
and g are continuous on the open interval I, then there exists exactly one solution
y = ϕ(t) that satisfies the differential equation (2) and the initial conditions (3).

The Homogeneous Equation. As in the case of second order linear differential
equations, we’ll first consider the homogeneous equation

y(n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = 0. (4)

If the functions y1, y2, . . . , yn are solutions of Eqn. (4), then it follows by direct
computation that the linear combination

y(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t)
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is also a solution of Eqn. (4). In fact, every solution of Eqn. (4) can be expressed in
this form, and the general solution of Eqn. (4) is

y(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t),

where y1, y2, . . . , yn is a linearly independent set of solutions of Eqn. (4).

Example. Verify that the functions 1, t, t3 are solutions of the third order linear
differential equation ty(3) − y′′ = 0. Find the general solution of the differential
equation.

Note: Read this subsection if you have had a course in linear algebra, or if you are
interested in the general theory. See me if you have questions or if you would like
more details.

Definition. The functions f1, f2, . . . , fn are said to be linearly dependent on an
interval I if there exists a set of constants k1, k2, . . . , kn, not all zero, such that

k1f1 + k2f2 + · · ·+ knfn = 0

for all t in I. If no such constants exist, then the functions f1, f2, . . . , fn are said to
be linearly independent.

It can be shown that a necessary and sufficient condition for the solutions y1, y2, . . . , yn

to be linearly independent is that W (y1, y2, . . . , yn) 6= 0, where W (y1, y2, . . . , yn) is
the Wronskian defined as

W (y1, y2, . . . , yn) =

∣∣∣∣∣∣∣∣∣∣
y1 y2 . . . yn

y′1 y′2 . . . y′n
. . . . . . . . .
. . . . . . . . .

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣
.

The Nonhomogeneous Equation. Next consider the nonhomogeneous differential
equation given by Eqn. (2),

y(n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = g(t).

Suppose that yh(t) is the general solution of the homogeneous equation

y(n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = 0,

and suppose that yp(t) is one particular solution of the nonhomogeneous equation

y(n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = g(t).
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Then the general solution of the nonhomogeneous equation is

y(t) = yh(t) + yp(t).

The Homogeneous Equation with Constant Coefficients. Consider the n-th
order linear homogeneous differential equation with constant coefficients:

a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0. (5)

Based on our knowledge of second order linear differential equations with constant
coefficients, it is natural to anticipate that y = ert will be a solution of Eqn. (5) for
suitable values of r. Substituting y = ert into the differential equation, we obtain

ert(a0r
n + a1r

n−1 + · · ·+ an−1r + an) = 0.

The polynomial

Z(r) = a0r
n + a1r

n−1 + · · ·+ an−1r + an (6)

is called the characteristic polynomial or characteristic equation of the differ-
ential equation. This polynomial of degree n has n zeros, say r1, r2, . . . , rn. Note
that some of the ri may be equal, and that some may be complex.

• Real and Unequal Roots. If the roots of the characteristic equation are real
and no two are equal, then the general solution of Eqn. (5) is

y(t) = c1e
r1t + c2e

r2t + · · ·+ cne
rt. (7)

Example. Find the general solution of the differential equation

y(4) + y′′′ − 7y′′ − y′ + 6y = 0.

Solution. The roots of the characteristic polynomial are r1 = 1, r2 = −1, r3 =
2, r4 = −3. Thus, the general solution of the differential equation is

y(t) = c1e
t + c2e

−t + c3e
2t + c4e

−3t.

• Complex Roots. If the characteristic polynomial has complex roots, they must
occur in conjugate pairs λ±µi. Provided that none of the roots is repeated, the
general solution of Eqn. (5) is still of the form given in Eqn. (7). However, just
as for the second order equation, we can replace the complex-valued solutions
eλ+iµt and eλ−iµt by the real-valued solutions

eλt cos(µt) and eλt sin(µt).
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Example. Find the general solution of the differential equation

y(4) − y = 0.

Solution. The roots of the characteristic polynomial are r = 1, − 1, i, − i.
Thus, the general solution of the differential equation is

y(t) = c1e
t + c2e

−t + c3 cos t + c4 sin t.

• Repeated Roots. If the roots of the characteristic polynomial are not distinct,
i.e. if some of the roots are repeated, then the solution of the form given in Eqn.
(7) is not the general solution of Eqn. (5). Recall that if r1 is a repeated root
of the second order linear equation ay′′ + by′ + cy = 0, then two solutions are
er1t and ter2t. For a differential equation of order n, if a root of Z(r) = 0, say
r = r1 has multiplicity s, then

er1t, ter1t, t2er1t, . . . , ts−1er1t

are corresponding solutions of Eqn. (5). If a complex root λ + iµ is repeated
s times, then its complex conjugate λ − iµ must also be repeated s times.
Corresponding to these 2s complex-valued roots, we can find 2s real-valued
solutions

eλt cos(µt), eλt sin(µt), teλt cos(µt), teλt sin(µt), . . . , ts−1eλt cos(µt), ts−1eλt sin(µt).

Example. Find the general solution of the differential equation

y(4) + 2y′′ + y = 0.

Solution. The roots of the characteristic polynomial are r = i, i, − i, − i.
Thus, the general solution of the differential equation is

y(t) = c1 cos(t) + c2 sin(t) + c3t cos(t) + c4t sin(t).

Example. Find the general solution of the differential equation

y(6) − 3y(4) + 3y′′ − y = 0.

Solution. The roots of the characteristic polynomial are r = −1, − 1, −
1, 1, 1, 1. Thus, the general solution of the differential equation is

y(t) = c1e
−t + c2te

−t + c3t
2e−t + c4e

t + c5te
t + c6t

2et.
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