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Chaos and the Lorenz Equations

Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?

These problems are due on Thursday, November 15, 2007.

1. Consider a layer of air that is heated from the bottom. The warmer air rising up interacts
with the colder air sinking down, and rolling convection is formed. Let x represent the rate at
which the convection rolls rotate. You can think of x as measuring the speed of motion in the
air due to convection. Let y represent the temperature difference between the ascending and
descending air currents, and let z represent the deviation from the linearity of the vertical
temperature profile (a positive value of z indicates that temperature varies faster near the
boundary). You can think of z as a measure of the vertical temperature difference as you move
through the system from top to bottom. The dynamical system that follows is derived from
the physical laws that govern convection, and was studied by mathematician and meteorologist
E. Lorenz.

dx

dt
= −σx + σy

dy

dt
= −y + rx− xz

dz

dt
= −bz + xy

The constants σ, r, and b are physical parameters of the system. We will consider the classic
case in which σ = 10 and b = 8/3. The parameter r represents the temperature difference
between the top and bottom of the air layer. Increasing r pumps more energy into the system,
creating more vigorous dynamics. We’ll start by considering the classic case r = 28, but later
you should experiment with different values of r.

(a) Find the equilibrium values of the system. Discuss the stability of the equilibrium values.
Confirm graphically that the equilibrium values that you find are actually equilibrium
values.

(b) Graphically simulate z(t) vs. x(t) for the initial conditions (2, 5, 20) over the time range
0 ≤ t ≤ 10.

(c) Graphically simulate z(t) vs. x(t) for the initial conditions (2.1, 5, 20) over the time range
0 ≤ t ≤ 10.

(d) Numerically simulate the system for the two different sets of initial conditions described
above.

(e) Plot x(t) vs. t on the same set of axes for the two different sets of initial conditions
described above. Do the same for y(t) vs. t and z(t) vs. t.
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(f) Now, you should notice that something strange and exciting seems to be going on here.
We’d really like to be able to watch the trajectories for x(t), y(t), and z(t) as they are
being drawn for different initial conditions. Unfortunately, Maple does not seem to have
the ability to animate DEplots. Use the Lorenz Attractor Java applet from Washington
and Lee University (accessible through the daily objectives page) to simulate the system.
Using this applet, you can watch simultaneous trajectories being drawn for different
initial conditions. Click on Launch Lorenz Attractor to start the applet. Once the applet
starts, you can change the initial conditions and parameters to simulate the system.
Leave the ∆t box unchanged. You can change the amount of time that the simulations
run for by increasing n. Leave the Simultaneous Trajectories box checked. The Deviation
field lets you change the difference in the initial conditions. So Deviation=0.1 corresponds
to the difference in initial conditions that we plotted in Maple.

(g) Discuss the results. What happens? Is chaos totally random? Or is there a deterministic
component? Is there any structure to the results that you observe? One of the properties
used to describe chaos is sensitive dependence on initial conditions. Based on your
observations, discuss the meaning of this property. What is the meaning of the statement
Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?

(h) Simulate the system for other initial conditions and other values of r, using both Maple
and the Java applet, and see if you find any interesting results.

2. ([MM] 6.5 #20). This problem illustrates the striking difference between the behavior of
continuous-time and discrete-time dynamical systems that can occur even in simple models.

(a) Show that the continuous-time dynamical system

dx

dt
= (α− 1)x− αx2

dy

dt
= x− y

has a stable equilibrium at x = y = α−1
α for any α > 1. Graphically and numerically

simulate the system for α = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0.

(b) Consider the analogous discrete-time dynamical system

x(t + 1)− x(t) = (α− 1)x(t)− α(x(t))2

y(t + 1)− y(t) = x(t)− y(t)

Show that this system also has an equilibrium at x = y = α−1
α for any α > 1. Use

graphical and numerical simulation to explore the stability of the equilibrium and the
behavior of nearby solutions. For each of the cases α = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, try
several different initial conditions near the equilibrium point and report what you see.

(c) Discuss the differences between the continuous and discrete systems.
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