Math 112 Monday, January 14, 2007 l'Hôpital's Rule

l'Hôpital's rule can be used to compute limits containing indeterminate forms. In its most basic form, l'Hôpital's rule states the following. Consider the limit

$$\lim_{x \to a} \frac{f(x)}{g(x)}.$$

Suppose that

$$\lim_{x \to a} f(x) = \pm \infty \text{ AND } \lim_{x \to a} g(x) = \pm \infty$$

OR

$$\lim_{x \to a} f(x) = 0 \text{ AND } \lim_{x \to a} g(x) = 0.$$

Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

assuming that the limit on the right-hand side exists.

Examples.

1. Compute
$$\lim_{x \to \infty} \frac{x}{e^x}$$
.

2. Compute $\lim_{x \to 0} \frac{x}{\sin x}$.

3. Compute
$$\lim_{x \to 0} \frac{e^x - 1}{x}$$
.

- 4. Compute $\lim_{x\to 0^+} x \ln x$.
- 5. Compute $\lim_{x \to 0} \frac{\sin^2 x}{\cos x 1}$.
- 6. Compute $\lim_{x \to \infty} \frac{x^2}{2^x}$.
- 7. Compute $\lim_{x \to \infty} (1 + \frac{1}{x})^x$.
- 8. Suppose that f and g are differentiable functions and that $g(0) \neq 0$. Show that

$$\lim_{x \to 0} \frac{xf(x)}{(e^x - 1)g(x)} = \frac{f(0)}{g(0)}.$$

9. Challenge. Compute $\lim_{x \to 0} \frac{1}{x} \int_0^x (1 + \sin(2t))^{\frac{1}{t}} dt$.

Math 112: Calculus B