Putnam Problem-Solving Seminar l'Hôpital's Rule

l'Hôpital's rule can be used to compute limits containing indeterminate forms. Suppose $f(x)$ and $g(x)$ are differentiable and that $g^{\prime}(x) \neq 0$ near a (except possibly at a). Suppose that

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

or that

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \text { and } \lim _{x \rightarrow a} g(x)= \pm \infty
$$

In other words, we have an indeterminate form of type $0 / 0$ or $\pm \infty / \pm \infty$. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

1. Evaluate

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{x} \frac{a^{x}-1}{a-1}\right)^{1 / x}
$$

where $a>1$.
2. Evaluate

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

3. Evaluate

$$
\lim _{n \rightarrow \infty}\left(\frac{n+1}{n+2}\right)^{n}
$$

4. Evaluate

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n^{2}}\right)^{n}
$$

5. Evaluate

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n^{2}}
$$

6. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{2 p_{n} P_{n}}{p_{n}+P_{n}}
$$

where

$$
p_{n}=\left(1+\frac{1}{n}\right)^{n}
$$

and

$$
P_{n}=\left(1+\frac{1}{n}\right)^{n+1}
$$

7. Evaluate

$$
\lim _{n \rightarrow \infty} 4^{n}\left(1-\cos \frac{\theta}{2^{n}}\right)
$$

8. Suppose that f is a function with two continuous derivatives and $f(0)=0$. Prove that the function g defined by $g(0)=f^{\prime}(0), g(x)=f(x) / x$ for $x \neq 0$, has a continuous derivative.
9. Let $0<a<b$. Evaluate

$$
\lim _{t \rightarrow 0}\left[\int_{0}^{1}\left[b x+a(1-x)^{t}\right] d t\right]^{1 / t}
$$

10. Calculate

$$
\lim _{x \rightarrow \infty} x \int_{0}^{x} e^{t^{2}-x^{2}} d t
$$

11. Prove that the function $y=\left(x^{2}\right)^{x}, y(0)=1$, is continuous at $x=0$.
12. Evaluate

$$
\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x}(1+\sin (2 t))^{1 / t} d t
$$

Some other fun problems related to Calculus.

1. Let $f:[0,1] \rightarrow(0,1)$ be continuous. Show that the equation

$$
2 x-\int_{0}^{x} f(t) d t=1
$$

has one and only one solution in the interval $[0,1]$.
2. Suppose that f is a continuous function for all x which satisfies the equation

$$
\int_{0}^{x} f(t) d t=\int_{1}^{x} t^{2} f(t) d t+\frac{x^{16}}{8}+\frac{x^{18}}{9}+C
$$

where C is a constant. Find an explicit form for $f(x)$ and find the value of the constant C.
3. Suppose that f is differentiable and that $f^{\prime}(x)$ is strictly increasing for $x \geq 0$. If $f(0)=0$, prove that $\frac{f(x)}{x}$ is strictly increasing for $x>0$.
4. Find all the differentiable functions f defined for $x>0$ which satisfy $f(x y)=$ $f(x)+f(y), x, y>0$.

