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Introduction
The customary ranking of students by grade point average (GPA) encour-

ages students to take easy courses, thereby contributing to grade inßation.
Furthermore, many ties occur, especially when most grades are high. We con-
sider several alternatives to the plain GPA ranking that attempt to eliminate
these problems while ranking students sensibly. Each is based on computing
a revised GPA, called an ability score, for each student. We evaluate these alter-
native methods within the context of the Þctitious ABC College, where grades
are inßated to the extreme that the average grade is A−.

• The standardized GPA replaces each grade by the number of standard devi-
ations above or below the course mean. Students are then ordered by the
average of their revised grades.

• The iterated adjusted GPA compares the average grade given in a course to
the average GPA of students taking it, thereby estimating how difÞcult the
course is. It repeatedly adjusts the grades until average grade equals the
average GPA and uses the corrected GPA to determine rank.

• The least-squares method assumes that the difference between two studentsÕ
grades in a course is equal to the difference between their ability scores. It
then sets up a large matrix of linear equations, with an optional handicap
for courses taken outside a studentÕs major, and solves for the ability scores
with a least-squares algorithm.
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Anacceptable rankingmethodmust reward students for scoringwell, while
taking into account the relative difÞculties of their courses. It must clearly
distinguish the top 10% of students. Preferably, the method should make al-
lowances for the fact that students often earn lower grades in courses outside
their majors and should not discourage them from taking such courses.
We used a small simulated student body to explore how the different meth-

ods work and to test the effects of changing a single grade. The least-squares
method gave the most intuitive and stable results, followed by the iterated
adjusted, the standardized, and Þnally the plain GPA. Under the least-squares
and iterated adjusted methods, when a certain studentÕs grade was changed
in one course, that student and other students in that course changed position
but most of the other students moved very little.
Weuseda larger simulated student body, generatedbya computerprogram,

to compare the iterated adjusted and standardized algorithms. They agree on
most of students in the top decile, around 89% if plus and minus grades are
included. They did not agree well with the plain GPA ranking, due to massive
ties in the latter.
All four methods are more reliable when plus and minus grades are in-

cluded, since a great deal of information is lost if only letter grades are given.
We recommend the least-squares method, since it is not very sensitive to

small changes in grades and yields intuitive results. It can also be adapted to
encourage well-roundedness of students, if the college chooses.
However, if there are more than about 6,000 students, the least-squares

method can be prohibitively difÞcult to compute. In that case, we recommend
the iterated adjusted GPA, which is easier to calculate and is the best of the
remaining methods.
We recommend against the standardized GPA, because it does not properly

correct for course difÞculty,makes assumptions that are inappropriate for small
or specialized courses, and produces counterintuitive results. We also recom-
mend against the plain GPA, because it assumes that all courses are graded on
the same scale and results in too many ties when grades are inßated.
To avoid confusion, we use the following terminology: A class is a group

of students who all graduate at the same time, for example, the class of 1999.
A course is a group of students being instructed by a professor, who assigns a
grade to each student.

Assumptions and Hypotheses
• It is possible to assign a single number, or Òability scoreÓ (this will be the
revisedGPA), to each student, which indicates the studentÕs relative scholas-
tic ability and, in particular, the studentÕs worthiness for the scholarship. In
other words, we can rank students.

• The rank should be transitive; that is, if X is ranked higher than Y, and Y
is ranked higher than Z, then X should be ranked higher than Z. We can
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therefore completely order students by rank.

• The performances of an individual student in all courses are positively cor-
related, since:

Ð There is a degree of general aptitude corresponding to the ability score
that every student possesses.

Ð All instructors, while their grade averages may differ, rank students
within their courses according to similar criteria.

• While there may be a difference between grades in courses that reßects the
studentÕs aptitude for the particular subjects, this has only a small effect,
because:

Ð Students select electives in a manner highly inßuenced by their skill at
the subjects available, that is, students tend to select courses at which
they are most talented.

Ð All students should major in an area of expertise, so that they are most
talented at courses within or closely related to their majors.

Ð The college may require courses that reßect its emphasis; even if the re-
quired courses could be considered ÒunfairÓ because they are weighted
towards one subject (e.g., writing), that is the collegeÕs choice and highly
ranked students must do well in such required courses.

• Not all courses have the same difÞculty. That is, it is easier to earn a high
grade in some courses than in others.

• The correspondence of grades to grade points is as follows: A=4.0, B=3.0,
C=2.0, D=1.0, F=0.0. A plus following a grade raises the grade point by
one-third, while a minus lowers it by the same amount (i.e., A−≈ 3.7, while
C+ ≈ 2.3).

• Students take a Þxed courseload for each semester for eight semesters.
• The average grade given at ABC College is A−. Thus we assume that the
average GPA of students is at least 3.5, the smallest number that rounds to
an A−.
• In general, X should be ranked ahead of Y (we write X > Y) if:

Ð X has better grades than Y, and

Ð X takes a more challenging courseload than Y, and

Ð X has a more well-rounded courseload (we recognize that this point is
debatable).
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Analysis of Problem and Possible Models

The Problem with Plain GPA Ranking
The traditionalmethodof ranking students, commonly knownas the grade-

point average, or GPA, consists of taking the mean of the grade points that a
student earns in each course and then comparing these values to determine the
studentÕs class rank.
The immediate problem with the plain GPA ranking is that it does not

sufÞciently distinguish between students. When the average grade is an A−,
all above-average students within any class receive the same grade, A. Thus,
with only four to six classes per semester, fully one sixth of the student body
can be expected to earn a 4.0 or higher GPA.1 This makes it all but impossible
to distinguish between the Þrst and second deciles with anything resembling
reliability. Furthermore, any high-ranking student earning a below-average
grade, for any reason, is brutally punished, dropping to the bottom of the
second decile, if not farther. This is a result of the extremely high average
grade; if the average grade were lower, there would be a margin for error for
top students.
Unfortunately, the plain GPA exacerbates its own problems by encouraging

the grade inßation that makes it so useless. Since the plain GPA does not
correct for course difÞculty, students may seek out courses in which it is easy
to get a good grade. Faced with the prospect of declining enrollment and poor
student evaluations, instructors who grade strictly may feel pressure to relax
their grading standards. Instructors who grade easily may be rewarded with
high enrollment and excellent evaluations, potentially leading to promotion.
The entire process may create a strong push towards grade inßation, since the
plainGPApunishes both the student taking a difÞcult course and the instructor
teaching it. Any system intended to replace the plain GPA should address this
problem, so that grade inßation will be arrested and hopefully reversed.
Another potential concern is that the plain GPA encourages specialization

by students. Since students tend toperformbetter in courses related to theirma-
jors, the GPA rewards students who take as few courses outside their Òcomfort
zoneÓ as possible and punish students who attempt to expand their horizons.
We note, however, that individual colleges may or may not regard this as a
problem; the relative values of specialization and well-roundedness are open
to debate.

Three Possible Solutions
Severalpotential alternatives toGPArankingdirectly comparegradeswithin

each course. Under such a system, the following considerations come into play:

1Repeated trials of the process described later yield this result.
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• It is not possible to compare students just to others in their own class. Stu-
dents often take courses in which all other students belong to another class.

• We have to compute rankings separately each semester, because the pool of
students changes due to graduation and matriculation.

• It is not possible to take into account independent studies, because there is
nobody to compare to.

• It is not possible to take into account pass/fail courses, because they do not
assign relative grades.

We recognize three potential solutions to this problem. The following sections
describe them in more detail.

• For the standardized GPA each student is given a revised GPA based on the
studentÕs gradeÕs position in the distribution of grades for each course.

• The iterated adjusted GPA attempts to correct for the varying difÞculties of
courses. In theory, every grade given to a student should be approximately
equal to the studentÕsGPA, so that the averagegradegiven in a course should
be about equal to the average GPA of students in that course. This scheme
repeatedly adjusts all the grade points in each course until the average grade
in every course equals the average GPA of the enrolled students.

• The least squares method assumes that, other things being equal, the differ-
ence between two studentsÕ grades will be equal to the difference in their
ability scores. It attempts to Þnd these ability scores by solving the system
of equations generated by each course (for example, if student X gets an A
but student Y gets a B, thenX−Y = 4.0−3.0 = 1.0). Since in any nontrivial
population this system has no solution, methods of least-squares approxi-
mation are used to approximate these values. The students are then ranked
according to ability score.

Standardized GPA

How It Works
The standardized GPA is perhaps the simplest method and one most in

keeping with the deanÕs suggestion. In each course, we determine how many
standard deviations above or below the mean each studentÕs grade is. This
standard score becomes the studentÕs ÒgradeÓ for the class, the studentÕs stan-
dard scores are averaged for a standardized GPA, and students are ranked by
standardized GPA. This is a quantiÞed version of the deanÕs suggestion to rank
each student as average, below average, or above average in each class, and
then combine the information for a ranking.
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Strengths
• The standardized GPA is not much more difÞcult to calculate than the plain
GPA measurement.

• Each course can be considered independently. Instead of waiting for all
results to come in, the registrar can calculate the standardized scores for
each course as grades come in, possibly saving time in sending grades out.

• The standard deviations do correct for differing course averages, for exam-
ple, getting a B+ when the course average is a C+ looks better than getting
an A− when the course average is an A. At the same time, this method
continues to rank students in the order in which they scored in each course.
Student X is thus always ranked above student Y if X and Y take similar
courses and X has better grades.

Weaknesses
The standardized GPA suffers frommany of the same problems as the plain

GPA.

• It does not reward students who have a more well-rounded courseload.
Instead, students arepunishedseverely if theyperformat less than the course
average; for example, a student who takes a course outside his or her major
is likely to score worse than students majoring in the courseÕs subject.

• The plain GPAmakes no distinction between easy and difÞcult courses and
thus encourages easy courses. The standardized GPA attempts to correct
this but ends up claiming that a low average grade is equivalent to a difÞcult
course. This is not always true and has some interesting quirks:

Ð Higher-level coursesmay be populated only by students who excel both
in the subject of the course and in general, so only high grades are given.
But if all grades are high, this method treats the course as easy!

Ð Thismethodboosts one studentÕs grade if theother students in the course
have lower scores.

Ð Additionally, ability scores may be signiÞcantly raised by adding poor
students to the course.

• The standardized GPA does not assume that instructors assign grades based
on a normal curve or to Þt any other prespeciÞed distribution. Not all
instructors grade on the normal curve or even on any curve. Some courses
may require grades to Þt some other distribution in order to be fair, for
example, if all the students are extraordinarily talented.

• Themethod does not compensate for the skill of the students when deciding
the difÞculty of a course. A good studentwho takes courseswith other good
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students will look worse than a slightly less able student who takes courses
among signiÞcantly less able students. The difÞculty of a course should be
measured not only by the grades of its students but also by the aptitudes of
those students.

Consequences
Grading based on deviation from the mean fosters cutthroat competition

among students, since any studentÕs ability score may be signiÞcantly raised
by lowering the ability scores of other students.

Iterated Adjusted GPA

How it Works
Rather than directly comparing students, this method compares courses.

Suppose that a course is unusually difÞcult. Then students should receive
lower grades in that course relative to their others, so the average grade in
that course should be lower than the average GPA of all students enrolled
in it. We should therefore be able to correct for courses that are unusually
difÞcult by adding a small amount to the point value of every grade given in
that course. Likewise, we can correct for easy courses by subtracting a small
amount. Of course, once we have corrected everyoneÕs grades, their newGPAs
will be different, andmost likely some courseswill need further correction. The
iterated adjusted GPA method makes ten corrections to all grades, then sorts
students in order of corrected GPA. (Our numerical experiments show that ten
iterations are sufÞcient to bring the difference between the average GPA and
the average grade down to zero, to three decimal places.)

Strengths
• This algorithm is fairly quick to compute, taking only a couple of minutes
for 1,000 students, 200 courses, and 6 courses per student.

• The computation is straightforward to explain and easily understood by
non-experts.

Weaknesses
• All grades from all courses must be known in order to run the computation.
• The corrected grades cannot be computed independently by students.
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• There is no guarantee that the corrected GPAs will be comparable across
semesters; to compute overall class rank at graduation, it will be necessary
to average ranks across semesters, rather than average corrected GPAs.

Consequences
This method systematically corrects for instructor bias in giving grades,

thus eliminating the tendency of students to select easy courses, and therefore
makes progress toward reversing grade inßation. The total correction made
for each course may be used as an indicator of the courseÕs grade bias.
This algorithm tends to ÒpunishÓ students in courses where grades are

unusually high. If students score high in a course relative to their other grades,
it could be because the course was easy or because the students put forth extra
effort. If the course was easy, then the punishment is due; if the difference was
due to extra effort, then such effort is not typical of the students in question
and the punishment is arguably due.
Although the correction can be applied to very small classes and indepen-

dent studies, strange things are likely to happen. If a student in an independent
study gets a grade above his GPA, he is punished by the correction, and if he
gets a lower grade, he is rewardedÑwhich is clearly undesirable. Using the
sample data set presented later in Table 1, we experimented with indepen-
dent studies and determined that they had minimal impact on the rank order.
However, to avoid the possibility of such strange results, independent studies
should be ignored in the computation.

The Least-Squares Algorithm

How It Works
The least-squaresmethodassumes that thedifferencebetween twostudentsÕ

abilities will be reßected in the difference between their grades. Hence, if X and
Y take the same course, and get grades A and B, then we have a differenceX −
Y = 4.0−3.0 = 1.0. We further assume that studentsmajoring innatural science
Þelds perform better in natural science courses than in humanities courses, and
vice versa, and that the difference is of approximately the same for all students;
we call it HH . Hence, if, in the example above, students X and Y are taking a
mathematics course, but X ismajoring in physics andY ismajoring in literature,
we have X − (Y +HH) = 1.0.

A course with N students generates N(N + 1)/2 such linear equations;
the abilities of each student are the solution to the set of all such equations
from every course offered during the semester. In practice, these equations
never have a solution. Hence, methods of least-squares approximation must
be employed. The system is converted into the matrix equation Ax = b, where
A is the matrix of the coefÞcients of the left-hand side of each equation, x is the
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vector of the abilities of each student and the constant HH , and b is the right-
hand side of each equation. Multiplication by the transpose of A yields the
equation ATAx = AT b. This matrix equation has a one-dimensional solution
set, with nullspace equal to scalar multiples of (1 1 1 . . . 1 0)

T , where the 1s
correspond to the studentÕs abilities and the 0 to the constant HH . Thus, one
studentÕs ability score may be assigned arbitrarily, and the rest will then be
well determined. This arbitrary assignment will in no way affect the ordering
of any two studentsÕ ability scores, or the magnitude of the difference between
two students. After these scores are determined, the difference between a 2.0
and the median score is added to every studentÕs score, so that the scores will
be easily interpretable in terms of the plain GPA. These scores can be averaged
over all eight semesters to produce a ranking at graduation.

Strengths
• Least squares corrects for the difÞculty of every studentÕs courseload.
• Least squares can reward students for carrying a well-rounded courseload.
This secondstrength is extremelyßexible, anddeserves further enumeration.

Ð If a school wishes not to account for well-roundedness, the factor HH

may be omitted, with no consequence except that the ability scores
will no longer consider the balance or specialization in each studentÕs
courseload.

Ð If a schoolwishes to emphasize several areas of specialization rather than
just two, it could do so by replacingHH with constants representing the
difÞculty of the transitions between each pair.

Ð Aschoolwanting to assure that certain emphasized courses (e.g., a fresh-
man writing course) not unduly beneÞt students majoring in some de-
partments could categorize such courses as belonging to every area of
specialization, or to none.

Ð Similarly, if a schoolwishes todictate that certainde-emphasized courses
(e.g., physical education) not reward students with a well-roundedness
correction, it may also dictate that they be categorized in every area of
specialization or in none.

Ð Other corrections may be made for students with special circumstances;
for example, if a student double-majors in two different areas of spe-
cialization, each well-roundedness correction might be replaced by the
average of the two corrections from each of the studentÕs major areas.

Weaknesses
Themostglaringweaknessof thismethod is that it involveshugeamountsof

computation and may severely tax computing resources at larger universities.
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For a student body of 6,000, with 120 courses of size 20 and each student
taking 4 courses, we have 1,200× 21(21 + 1)/2 ≈ 250,000 pairs of grades. This
results in a sparse A with 250,000 rows, 6,000 columns, and only 4 nonzero
entries in each column (for the 4 courses that the student took). Then ATA has
36,000,000 entries; at 4 bytes per entry, keeping it in memory requires 144 MB,
barelywithin range of currentmedium-size computers. ComputingATA takes
on the order of 250,000 × 6,0002 = 9 × 1012 multiplications, computing AT b
takes only about 1.5×109multiplications, and solvingATAx = AT b takes about
6,0003 = 2.2× 1011 operations. Thus, the time to solve the system is about 1013

operations, which would take 50,000 sec ≈ 14 hr on a 200 MHz computer.
The memory needed increases with the square of the number of students

and quickly becomes infeasible with this approach and current technology.

Consequences
An immediate consequence of changing to this ranking will be that, so long

as the average grade remains anA−, all ability scoreswill be tightly packed into
a range between about 1.0 and about 3.0; no student will appear to carry an A
average. This will likely result in instructors widening their grading scales, in
order to reward their best students, thus reducing grade inßation to something
more reasonable.

A Small Test Population
We postulate a minicollege, with 18 students (AÐR), that offers only the fol-

lowing courses: Math, Physics, Computer Science, Physical Education, Health,
English, French, History, Philosophy, Psychology, and Music History.
Math, Physics, and English are generally believed to be prohibitively difÞ-

cult courses, while Physical Education,Health, andMusicHistory are generally
considered to be very easy. StudentsÕ transcripts are listed inTable 1. Just look-
ing at these transcripts, without analyzing them numerically, we Þnd that we
should have the following, which any valid ranking system must satisfy (recall
that X > Y means that X should be ranked above Y):

• A > B; C > D; and E > F, and so on, because A, C, etc., carry better grades
than B, D, etc., in courseloads of similar difÞculty.

• O, D > J because O and D have slightly better grades than J in more difÞcult
courseloads.

• E > D because E has better grades in a more difÞcult courseload.
We also recognize the following relationships as desirable:

• O > Q, R and P > R, because O and P have almost as good grades and much
more difÞcult schedules.
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Table 1.
Transcripts of the test population.

A star indicate the studentÕs major. ÒCPSÓ means Computer Science and ÒPhysEdÓ means

Physical Education.

Student Courses

A PhysEd 4.3, Health 4.0, *History 3.0, Math 2.3
B PhysEd 4.3, Health 3.3, *Psychology 2.0, CPS 2.0
C Math 4.0, *Physics 4.3, CPS 4.0, Philosophy 3.7
D *Math 4.0, Physics 3.7, CPS 4.0, French 3.0
E *Math 4.3, Physics 4.0, English 3.3, History 3.7
F Physics 3.7, *CPS 4.0, French 3.7, History 3.0
G Math 4.0, *CPS 4.3, Health 4.0, English 3.7
H CPS 3.0, *Physics 4.0, PhysEd 4.0, Psychology 3.0
I English 4.0, French 4.3, CPS 3.7, *Philosophy 4.3
J English 3.7, *French 4.0, Music History 4.0, Math 2.7
K *English 4.3, Philosophy 4.0, Psychology 4.0, Music History 4.3
L English 3.7, *History 4.0, Psychology 4.0, Music History 4.0
M Music History 4.3, Psychology 4.3, *French 4.3, PhysEd 4.0
N *Music History 4.0, Psychology 4.0, French 4.0, Health 4.0
O Physics 4.0, English 3.3, *Math 4.0, Philosophy 4.0
P Physics 3.0, *English 3.7, Math 3.3, Philosophy 4.0
Q PhysEd 4.0, Health 4.3, Music History 4.3, *Psychology 4.3
R PhysEd 4.0, Health 4.0, Music History 4.0, *CPS 4.0

• M > Q and N > R, because M and Q have similar grades but M has a more
difÞcult schedule, and similarly for N and R.

• K>M,N,Q,RbecauseKhas similargrades inamuchmoredifÞcult schedule.
• C, G, and K should be ranked near each other because they have similar
grades in similar schedules.

• P> J because Phas similar grades against a signiÞcantlymore difÞcult sched-
ule and has higher grades in the two classes that they share.

If we postulate that the well-roundedness of a studentÕs schedule should
affect rank, we also Þnd the following relationships:

• E > C, D because E has almost as good grades in amore difÞcult, muchmore
well-rounded schedule.

• I > K, M because I has similar grades against a more well-rounded schedule.

The rankings of this sample population are given in the Table 2. A compar-
ison of the different methods relative to the criteria that we have set out is in
Table 3. Least squares does best, followed by iterated adjusted, standardized,
and plain.
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Table 2.

Rankings of the sample population under the various methods.

With+/− Without+/−

Rank Plain Standardized Iterated LS Plain Standardized Iterated LS

1 Q 4.25 K 0.84 K 4.22 E 2.32 R 4.00 G 0.53 L 4.12 G 2.25
2 M 4.25 I 0.81 I 4.17 I 2.26 Q 4.00 L 0.49 G 4.07 I 2.19
3 K 4.17 Q 0.60 M 4.09 G 2.24 C 4.00 C 0.39 I 4.06 E 2.17
4 I 4.08 M 0.52 C 4.08 C 2.24 N 4.00 I 0.36 C 4.05 C 2.17
5 R 4.00 G 0.39 G 4.07 O 2.18 M 4.00 N 0.34 K 4.03 F 2.14
6 N 4.00 C 0.22 L 4.06 K 2.14 G 4.00 K 0.27 N 3.96 O 2.04
7 C 4.00 E 0.21 E 4.05 M 2.05 K 4.00 M 0.24 E 3.92 L 2.04
8 G 4.00 L 0.16 Q 4.02 Q 2.03 I 4.00 Q 0.24 M 3.89 D 2.03
9 L 3.92 N −0.01 O 3.96 F 2.01 L 4.00 R 0.23 J 3.87 R 2.02
10 E 3.83 O −0.03 N 3.90 R 1.99 O 3.75 F 0.11 D 3.84 K 1.98
11 O 3.83 R −0.20 R 3.76 P 1.94 J 3.75 J 0.07 F 3.84 J 1.95
12 D 3.67 D −0.26 D 3.74 D 1.93 F 3.75 E 0.07 O 3.83 N 1.90
13 J 3.58 A −0.27 F 3.69 L 1.92 E 3.75 D −0.12 Q 3.81 M 1.88
14 F 3.58 F −0.28 J 3.66 N 1.87 D 3.75 O −0.15 R 3.80 P 1.87
15 H 3.50 H −0.45 P 3.62 J 1.74 H 3.50 H −0.30 P 3.58 Q 1.85
16 P 3.50 J −0.49 H 3.41 H 1.60 P 3.50 P −0.60 H 3.39 H 1.58
17 A 3.42 P −0.59 A 3.36 A 1.44 A 3.25 A −0.61 A 3.18 A 1.26
18 B 2.92 B −1.16 B 2.76 B 0.89 B 2.75 B −1.56 B 2.59 B 1.54

Table 3.

Number of criteria satisÞed by each method on the minicollege data set, for +/− grades.

Plain Standardized Iterated Least Squares

Required (20) all all all all
Desirable (13) 5 6 8 9
Well-roundedness (4) 1 2 2 all

Test Population Redux (No +/− Grades)
We now take the test population and drop all pluses and minuses from the

grades. Again, we determine some basic required relationships that any valid
ranking system must satisfy:

• A > B; C > D; and G > H since A, C, and G have better grades in similar
courses.

We also recognize the following relationships as desirable:

• O > P because O has slightly better grades in the same courseload.
• E > F because E has the same grades in a more difÞcult courseload.
• O > Q, R because O has almost equivalent grades in a much more difÞcult
courseload.

• C > I, G because C has the same grades in a more difÞcult courseload.
• I > K, L because I has the same grades in a more difÞcult courseload.
• K, L > M, N because K and L have the same grades in a more difÞcult
courseload.
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• M, N > Q, R because M and N have the same grades in a more difÞcult
courseload.

If we postulate that the well-roundedness of a studentÕs schedule should affect
rank, we also Þnd that C, E, G, and I should be ranked near each other because

• E has slightly worse grades in a more difÞcult, better-rounded courseload;
and

• C has the same grades as G and I in a slightly more difÞcult, slightly less
well-rounded courseload.

The rankings of this sample population are given in the right-hand half of
Table 2. Table 4 gives a comparison of the methods.

Table 4.

Number of criteria satisÞed by each method on the minicollege data set (no +/− grades).

Plain Standardized Iterated Least Squares

Required (3) all all all all
Desirable (12) 1 6 9 9
Well-roundedness (6) 3 1 3 4

Stability

HowWell Do the Models Agree?
We have four ways of ordering students: plain GPA, standardized GPA,

iterated adjusted GPA, and least squares. Since all four are more or less reason-
able, they should agree fairly well with each other. One way to test agreement
is to plot each studentÕs rank under onemethodwith his rank under the others.
If the plot is scattered randomly, then the rankings do not agree about anything.
If the plot is a straight line, then the rankings agree completely.
Toget an idea forhoweachmodelworks,wecreatedbymeansof a computer

simulation a population of 1,000 students and 200 courses, with 6 courses per
student. The details of the simulator are explained in the Appendix. We
implemented all of the algorithms except least squares, which was too difÞcult
for the available time. A single run of the simulation is analyzed here, but these
results are typical of other runs.

With Plus and Minus Grades
See Figures 1Ð3 for graphs of the agreement, using simulated students and

courses, and allowing plus and minus grades. The comparisons to plain GPA
rankings are rather scattered, especially toward the lower left corner, where
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the highest rankings are. The plain GPA rankings do not appear to agree
particularlywell with either the iterated adjusted or the standardized rankings.
There are lots of scattered points, which is due mostly to the facts that there are
lots of ties in plain GPA rankings (especially near the top of the class) and that
tied students are ordered more or less at random. Very few ties are present in
any of the other methods.
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Figure 1. PlainGPArankings vs. standard-
ized GPA rankings, using simulated stu-
dents.
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Figure 2. Plain GPA rankings vs. iterated
adjusted GPA rankings, using simulated
students.
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Figure 3. Standardized GPA rankings vs.
iteratedadjustedGPArankings, using sim-
ulated students.
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Figure 4. PlainGPArankings vs. standard-
ized GPA rankings, using simulated stu-
dents, with no plus or minus grades.

The iterated adjusted and standardized rankings are in better agreement,
with fewer outlying points. These twomethods agree on 89 of the 100 students
in the top decile.

Without Plus and Minus Grades
See Figures 4Ð6 for graphs of the agreement, using simulated students and

courses, and disallowing plus and minus grades.
A great deal of information is lost without the use of plus andminus grades.

In particular, there are many more ties in the plain GPA-based ranking, which
show up as large squares of scattered points. The large square at the bottom
left shows the massive tie among people with 4.0 averages. Again, the plain
GPA is not in good agreement with the nontraditional methods due to these
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Figure 5. Plain GPA rankings vs. iterated
adjusted GPA rankings, using simulated
students, with no plus or minus grades.
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Figure 6. Standardized GPA rankings vs.
iteratedadjustedGPArankings, using sim-
ulated students, with no plus or minus
grades.

ties. Both new models agree with each other on 79 of the 100 students in the
top decile. Apparently, the loss of information is responsible for the greater
lack of agreement.

How Much Does Changing One Grade Affect the
Outcome?
If one grade of one student is changed, the studentÕs rank can be expected

to change as well. For plain GPA rankings, changing one studentÕs grades
can only move that student from one place to another. In the nontraditional
rankings, each studentÕs rank is determined relative to the other students, and
one changed grade might trigger a chain of rank changes.
To test sensitivity, the sample population was modiÞed slightly: Student

QÕs grade of A+ in Music History was changed to a C−, a very drastic change.
The change was tested including plus and minus grades and using only whole
letter grades. (When only letter grades are considered, the change is to a C.)

• Using the GPA ranking and plus and minus grades, Q dropped from 1st to
14th; with only whole letter grades, Q dropped from 2nd to 16th. In both
cases, there were no changes in the order of other students except to make
room for Q.

• For the standardized GPAwith plus andminus grades, Q dropped from 3rd
to 12th. L, N, and J improved several places, apparently because they also
tookMusicHistory andbeneÞtted from thedrop inmeangrade. R improved
one spot, apparently for the same reason. K dropped by one. Without plus
and minus grades, Q dropped 8 places, and J, L, and N improved one rank
each. Student I dropped three places, perhaps because of how N and K
beneÞtted from Music History.

• The iterated adjusted GPA including plus and minus grades was rather
stable. Q dropped 9 places, and J and L improved a couple of places each,
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beneÞtting from the apparent increase in the difÞculty of Music History. G
dropped two places, possibly because he scored lower inHealth. When only
whole letter grades are used, Qdropped from13th to 16th. J andK improved
a couple of places, beneÞtting from the increased difÞculty ofMusic History,
while G dropped again, three places this time. O and F switched places for
no obvious reason.

• Using least squares and plus and minus grades, Q dropped 9 places. Other
members of theMusicHistory course J andK improvedabit, andL improved
a lot. With letter grades only, Q dropped from 15th to 16th, and J, K, and L
improved. For no obvious reason, E and C switched places. O dropped by
two because of improvements by K and L.

Thus, it would seem that plain GPA ranking is the most stable, since at most
one person changes rank and the rest move up or down at most one rank
to compensate. The next most stable seems to be least squares, followed by
iterated adjusted, and Þnally standardized. In each scheme, the coursemates
of the person whose grade changed are most likely to change rank. There were
a few chain-reaction reorderings, which are harder to explain. Also, having
plus and minus grades appears to improve stability in general.

How Does Course Size Affect the Outcome?
Another simulationwas runwith 1,000 students, 500 courses, and 6 courses

per student. Courses came out smaller, and the correlation between the stan-
dardized ranking and the iterated adjusted ranking was weaker. This is proba-
bly due to the fact that standard deviations computed on smaller data sets tend
to be less reliable, as are average grades and average GPAs.

Strengths and Weaknesses of Each Model
and Recommendations
If the college wishes to promote well-roundedness over specialization (we

would suggest this), and has a fairly small population (fewer than about 6,000
students), we recommend the least-squares method. Otherwise, we recom-
mend the iterated adjusted GPA method.
We feel that the least-squares method is superior to the other two because:

• It does not punish students for attempting to expand their horizons.
• It produces results more consistent with intuitive observation than do the
iterated or standardized GPA.

• It is more ßexible than either the iterated or standardized GPA.
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• It is clear and easily understood.
The iterated adjusted GPA method has a few deÞnite advantages as well:

• It is signiÞcantly faster than the least-squares method.
• If thewell-roundedness of students is not a consideration, it produces results
that are roughly as consistent with intuitive observation as the least-squares
method.

We feel that the standardizedGPAmethod is decidedly inferior, and should
not be recommended, because:

• It makes no attempt to correct for schedule difÞculty or well-roundedness.
• It assumes that all courses have the same range of ability among their stu-
dents.

• It produces results that are no more consistent with intuitive observation
than those produced by the plain GPA.

Further Recommendations

Transition from GPA Ranking
The three methods given here all rank an entire student body for one

semester of courses. Thus, to rank students just within a single class, we
must either average their ability scores (revised GPAs) or their ranks within
their class over each semester. The new system could be phased in at any time
if grades for enough preceding years are kept on record. The new ranking
algorithm could be applied to students who have graduated to determining
rankings for the next class. However, we recommend careful testing on several
past years of data as well as current grades. The administration should be
prepared for a great deal of student and faculty opposition because it is a new,
untested system. The standardized and iterated adjusted schemes are likely
to encounter opposition because they directly alter the point values of grades
during computation. The least-squares method simply reinterprets them and
is less likely to make instructors feel that their authority has been violated.

Transfer Students
ABCCollege will have to come upwith its own policy concerning the rank-

ing of transfer students. One option is to translate transferred grades to an
equivalent grade in a particular course at ABC. That allows the ranking algo-
rithm to run on the maximum amount of information. However, someone will
have to compare all other colleges to ABC very carefully to create the ofÞcial
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translation policy. Another possibility is to ignore transferred grades when
computing the rankings. That avoids the problem of estimating how grades
at other schools compare to ABCÕs, but at the expense of throwing out a lot of
information.

Importance of Plus and Minus Grades
It seems that plus and minus grades are extremely helpful in determining

class rank, especially since grades are so heavily inßated. Without them, ABC
has to rank its students primarily on the basis of just two grades, A and B, and a
considerable fraction of the students have exactly the same grades. With pluses
and minuses, there are six different grades, A+, A, A−, B+, B, and B−, which
come into play, thus differentiating students more precisely. All four ranking
systems appear to work better when plus and minus grades are used. ABC
should encourage its instructors to use them with care.

Appendix: Details of the Simulation

Simulating Courses
We want to take the following things into consideration when creating

courses:

• Students tend to pick more courses in areas they are comfortable in. In
particular, they are required to select courses in their majors.

• Courses vary in subject matter. Some require a lot of math and scientiÞc
experience,while others focusmoreonhumannature, history, and literature.

• Courses vary in difÞculty. Here, we are not considering the difÞculty of
the material, but rather how difÞcult it is to get a good grade in the course.
Students generally prefer courses where they expect to get better grades.

• Students are able to estimate their grade in a course fairly accurately.
Each simulated course c therefore has three attributes. The Þrst two are

fractions, cs and ch, which represent how much the course emphasizes the
sciences and the humanities, respectively. Since these are fractions of the total
effort required for a course, we have cs + ch = 1. In the simulation, cs is
determined by generating uniformly distributed random numbers between 0
and 1, and ch = 1− cs.
The third attribute ce is the ÒeasinessÓ of the course, that is, how easy it is

to get a good grade. This number represents the tendency of the instructor to
give higher or lower grades. In the simulation, ce is determined by taking a
uniformly distributed random number between −0.5 and 0.5, indicating that
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instructors may skew their grades by up to half a letter grade up or down. We
use a uniform distribution rather than a normal distribution so as to make the
courses vary in difÞculty over the entirety of a small range.

Simulating Students
Wewant to take the following things into consideration when creating sim-

ulated students:

• Students have varying strengths and weaknesses. In particular, some stu-
dents have different ability levels in the sciences and humanities. Students
prefer courses within their comfort zones.

• Students prefer getting higher grades.
Each simulated student S has two attributes, Ss and Sh. Both of these are

numbers representing grades that indicate the studentÕs abilities in the sciences
and humanities, respectively. Both range from 0 to gmax, which is either 4.0 or
4.3 depending on the grading scale.
Given a course c and a student S, the grade for that student in that course

is given by

g = min (Sscs + Shch + ce, gmax) . (1)

In the simulation, Ss and Sh are determined by taking random numbers
from a normal distribution with mean 3.5 and standard deviation 1.0, with a
maximum of gmax.

Generating a Simulated Population
The simulated population is created by Þrst generating a number of courses

and a number of students. A courseload is selected for each student S by
repeating the following: First, a course c is selected at random. If the student is
weak in science (Ss < 2.5) and the course is heavy in science (cs > 0.75), then
the course is rejected. Similarly, if the student is weak in humanities and the
course is heavy in humanities, the course is rejected. If the student estimates
his or her overall grade at less than 2.5, the course is rejected. This process of
selection and rejection is repeated until a course is not rejected, but at most ten
times, and then the last course is taken no matter what. The selected course is
then added to the studentÕs schedule and the grade computed as stated in (1),
rounded to the nearest possible grade.
The rejectionprocessallows for the studentsÕpreferences in selectingcourses,

and the fact that at most ten courses can be rejected allows for distribution re-
quirements.
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Analysis of the Simulated Data
The simulation programwas used to create 1,000 students and 200 courses,

where the courseload was six. Thus, there were around 1,000 × 6/200 ≈ 30
people in each course, which is reasonable. Two runs were made, one with
only whole grades, and one with + and − grades allowed.
We can determine a lower bound for the average GPA at ABC College.

Suppose we have N students, each of whom takes M courses. Denote by gij
the grade of student i in that studentÕs jth course. Then the average grade for
that entire class is given by ∑N

i=1

∑M
j=1 gij

NM
,

and the average GPA is given by

∑N
i=1

PM
j=1 gij

M

N
.

The two are equal, so if the average grade at ABC College is A−, then the
average GPA should be no more than 3.5. Any GPA less than 3.5 would be
rounded to a B+ or less, and those greater than 3.5 would be rounded to A−
or better. In the both data sets, the median GPAwas 3.5, which agrees with the
information given about ABC College.

Strengths and Weaknesses of the Simulation
The computation runs very quicklyÑin a fewminutesÑeven though it was

written in a high-level interpreted language (Python). It is very ßexible and
can be adjusted to reßect different grade distributions, as may be found in
different colleges. It takes into account variation in student interest and in
course material.
However,most of the courses turn out roughly the same size. Many colleges

have a high proportion of small, seminar-style courses, and there are almost
always some very large lectures. The simulation ranks the whole school to-
gether and does not distinguish among the classes. There are only two majors
in the simulation, sciences and humanities; and while there are forces within
the simulation that push students into taking more courses in their preferred
area of knowledge, there are no guarantees that the resulting schedules accu-
rately reßect major requirements. There are also no prerequisites enforced, and
thus no courses that are predominantly populated by freshmen and seniors.
This also means that the simulator cannot realistically create courses for more
than one year.




