Volumes

Cross Sections

Cross sections perpendicular to the x-axis. Suppose that a solid has its base on the $x y$-plane between the vertical lines $x=a$ and $x=b$. For all x in $[a, b]$, let $A(x)$ denote the area of the cross-section at x perpendicular to the x-axis. If $A(x)$ is a continuous function, then the volume of the solid is given by:

$$
V=\int_{a}^{b} A(x) d x
$$

Cross sections perpendicular to the y-axis. Suppose that a solid has its base on the $x y$-plane between the horizontal lines $y=c$ and $y=d$. For all y in $[c, d]$, let $A(y)$ denote the area of the cross-section at y perpendicular to the y-axis. If $A(y)$ is a continuous function, then the volume of the solid is given by:

$$
V=\int_{c}^{d} A(y) d y
$$

Examples.

1. The base of a solid is the circle $x^{2}+y^{2}=1$. Cross-sections of the solid perpendicular to the x-axis are squares with one side in the $x y$-plane. Find the volume of the solid.
2. The base of a solid is the region enclosed by the parabola $y=x^{2}$ and the line $y=4$. Cross-sections of the solid perpendicular to the y-axis are semi-circles with diameter on the $x y$-plane. Find the volume of the solid.
