General Theory: Series Solutions Near an Ordinary Point

We have considered the problem of finding solutions of the differential equation

$$
\begin{equation*}
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 \tag{1}
\end{equation*}
$$

where P, Q, and R are polynomials, in the neighborhood of an ordinary point x_{0}. Recall that an ordinary point is any point x_{0} such that $P\left(x_{0}\right) \neq 0$.

Theorem. If x_{0} is an ordinary point of Eqn. (1), then there exists a solution $y(x)$ of Eqn. (1) of the form

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

where a_{0} and a_{1} are arbitrary and y_{1} and y_{2} are linearly independent solutions that have Taylor series expansions around x_{0}. Moreover, the radius of convergence of the series solution $y(x)$ is at least as large as the minimum of the radii of convergence of the power series for $p=Q / P$ and $q=R / P$.

Example 1. Consider the differential equation

$$
y^{\prime \prime}+x^{2} y^{\prime}+\left(1+x^{2}\right) y=0
$$

Can we determine a series solution about $x=0$ for the differential equation? If so, what is the radius of convergence? For this differential equation, $p(x)=x^{2}$ and $q(x)=1+x^{2}$. Both $p(x)$ and $q(x)$ have Taylor series expansions about $x_{0}=0$ that converge for all x. Thus, there is a series solution of the form

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

of the differential equation that converges for all x.
Example 2. Consider the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0 .
$$

Can we determine a series solution about $x=0$ for the differential equation? If so, what is the radius of convergence? For this differential equation, $p(x)=\frac{-2 x}{1-x^{2}}$ and $q(x)=\frac{2}{1-x^{2}}$. Both $p(x)$ and $q(x)$ have Taylor series expansions about $x_{0}=0$ that converge for $-1<x<1$. Thus, there is a series solution of the form

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

of the differential equation that converges at least for $-1<x<1$, and possibly for larger values of x. (In fact, it can be shown that the series solution converges for all $x)$.

