Taylor's Theorem: Accuracy for Taylor Polynomials

Recall that the *n*-th order Taylor polynomial for a function f(x) centered at x_0 is given by:

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

= $f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$.

Previously, we observed that the Taylor polynomial $P_n(x)$ approximates f(x) around x_0 , and that the accuracy of the approximation improves as n increases. Taylor's theorem provides a precise statement of how close P_n is to the actual function f:

Taylor's Theorem. Suppose that $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$ is the *n*-th order Taylor polynomial for f(x) centered at x_0 . Suppose that for all x in some interval I,

$$|f^{(n+1)}(x)| \le K_{n+1}.$$

Then

$$|f(x) - P_n(x)| \le \frac{K_{n+1}}{(n+1)!} |x - x_0|^{n+1}.$$

This theorem says that the maximum possible error committed by P_n in approximating f is given by the expression $\frac{K_{n+1}}{(n+1)!}|x-x_0|^{n+1}$.

Examples.

- 1. Suppose that the 4-th order Maclaurin polynomial is used to approximate the function $f(x) = e^x$. Find the maximum error committed by the polynomial in approximating e^2 . What order polynomial must be used in order to approximate e^2 to within 10^{-10} ?
- 2. Find the Taylor polynomials P_1 and P_2 for the function $f(x) = \sqrt{x}$ centered at $x_0 = 64$. Find the maximum errors committed by these polynomials in approximating $\sqrt{65}$ and $\sqrt{80}$.
- 3. Find the Maclaurin polynomial P_5 for the function $f(x) = \sin(x)$. Suppose that we want to use this polynomial as an approximation for $f(x) = \sin x$ for all x in the interval [-2, 2]. Find the maximum error committed by P_5 in approximating f on the interval [-2, 2].