Taylor's Theorem: Accuracy for Taylor Polynomials

Recall that the n-th order Taylor polynomial for a function $f(x)$ centered at x_{0} is given by:

$$
\begin{aligned}
P_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} \\
& =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} .
\end{aligned}
$$

Previously, we observed that the Taylor polynomial $P_{n}(x)$ approximates $f(x)$ around x_{0}, and that the accuracy of the approximation improves as n increases. Taylor's theorem provides a precise statement of how close P_{n} is to the actual function f :
Taylor's Theorem. Suppose that $P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$ is the n-th order Taylor polynomial for $f(x)$ centered at x_{0}. Suppose that for all x in some interval I,

$$
\left|f^{(n+1)}(x)\right| \leq K_{n+1}
$$

Then

$$
\left|f(x)-P_{n}(x)\right| \leq \frac{K_{n+1}}{(n+1)!}\left|x-x_{0}\right|^{n+1}
$$

This theorem says that the maximum possible error committed by P_{n} in approximating f is given by the expression $\frac{K_{n+1}}{(n+1)!}\left|x-x_{0}\right|^{n+1}$.

Examples.

1. Suppose that the 4 -th order Maclaurin polynomial is used to approximate the function $f(x)=e^{x}$. Find the maximum error committed by the polynomial in approximating e^{2}. What order polynomial must be used in order to approximate e^{2} to within 10^{-10} ?
2. Find the Taylor polynomials P_{1} and P_{2} for the function $f(x)=\sqrt{x}$ centered at $x_{0}=64$. Find the maximum errors committed by these polynomials in approximating $\sqrt{65}$ and $\sqrt{80}$.
3. Find the Maclaurin polynomial P_{5} for the function $f(x)=\sin (x)$. Suppose that we want to use this polynomial as an approximation for $f(x)=\sin x$ for all x in the interval $[-2,2]$. Find the maximum error committed by P_{5} in approximating f on the interval $[-2,2]$.
