Taylor Polynomials: Solutions to the Examples

Examples. See the posted Maple file for graphs.

1. Find the 5 -th order Taylor (Maclaurin) polynomial P_{5} for the function $f(x)=e^{x}$ centered at $x_{0}=0$.
Solution. $P_{5}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}$. The key observation that you should make from the graph is that the accuracy of the approximation is best near the center $x_{0}=0$.
2. Find the Taylor (Maclaurin) polynomials P_{1}, P_{3}, P_{5}, and P_{7} for the function $f(x)=\sin x$ centered at $x_{0}=0$. Plot $P_{1}, P_{3}, P_{5}, P_{7}$, and f on the same set of axes. Discuss the results.

Solution.

$$
\begin{aligned}
P_{1}(x) & =x \\
P_{3}(x) & =x-\frac{1}{3!} x^{3} \\
P_{5}(x) & =x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5} \\
P_{7}(x) & =x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}
\end{aligned}
$$

The key observation that you should make from the graphs is that the accuracy of the approximations increases as the order n of the polynomial increases.
3. Find the 5 -th order Taylor polynomial for the function $f(x)=\frac{1}{x}$ centered at $x_{0}=1$. Graph P_{5} and f on the same set of axes.
Solution. $P_{5}(x)=1-(x-1)+(x-1)^{2}-(x-1)^{3}+(x-1)^{4}-(x-1)^{5}$
4. Find the 4 -th order Taylor polynomial for the function $f(x)=\sqrt{x}$ centered at $x_{0}=9$. Graph P_{4} and f on the same set of axes.
Solution. $P_{4}(x)=3+\frac{1}{6}(x-9)-\frac{1}{216}(x-9)^{2}+\frac{1}{3888}(x-9)^{3}-\frac{5}{279936}(x-9)^{4}$. This polynomial provides a good approximation for the function $f(x)=\sqrt{x}$ around $x_{0}=9$. In particular, this polynomial could be used to approximate $\sqrt{10}$.
5. Find the 4-th order Taylor polynomial for the function $f(x)=\ln x$ centered at $x_{0}=4$. Graph P_{4} and f on the same set of axes.
Solution. $P_{4}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\frac{1}{4}(x-1)^{4}$.

