Taylor Polynomials

Recall that the Taylor series for a function $f(x)$ is given by

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k},
$$

where $f^{(k)}$ represents the k-th derivative of f. In practice (e.g. for graphing and numerical approximations), it is often difficult to work with infinite series representations of functions, so we instead approximate $f(x)$ with a partial sum

$$
\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

This partial sum is called the n-th order Taylor polynomial centered at x_{0} :

$$
\begin{aligned}
P_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} \\
& =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

The following are some important properties of Taylor polynomials:

- Taylor polynomials provide an approximation for a function $f(x)$.
- As with series, if the center of the polynomial is $x_{0}=0$, we call the resulting polynomial a Maclaurin polynomial:

$$
\begin{aligned}
P_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} \\
& =f\left(x_{0}\right)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n} .
\end{aligned}
$$

- A Taylor polynomial P_{n} of order n is constructed such that its value and first n derivatives at $x=x_{0}$ agree with those of $f(x)$.
- An n-th order Taylor polynomial is a polynomial of degree n.
- Taylor polynomials can be used to provide a polynomial approximation for more complicated functions. As the order of the Taylor polynomial increases, the approximation becomes a closer match to the actual function.

Examples.

1. Find the 5 -th order Taylor (Maclaurin) polynomial P_{5} for the function $f(x)=e^{x}$ centered at $x_{0}=0$.
2. Find the Taylor (Maclaurin) polynomials P_{1}, P_{3}, P_{5}, and P_{7} for the function $f(x)=\sin x$ centered at $x_{0}=0$. Plot $P_{1}, P_{3}, P_{5}, P_{7}$, and f on the same set of axes. Discuss the results.
3. Find the 5 -th order Taylor polynomial for the function $f(x)=\frac{1}{x}$ centered at $x_{0}=1$. Graph P_{5} and f on the same set of axes.
4. Find the 4 -th order Taylor polynomial for the function $f(x)=\sqrt{x}$ centered at $x_{0}=9$. Graph P_{4} and f on the same set of axes.
5. Find the 4-th order Taylor polynomial for the function $f(x)=\ln x$ centered at $x_{0}=4$. Graph P_{4} and f on the same set of axes.
