Homework 12: Taylor and Maclaurin Series

1. Find the Taylor series for $f(x)=\cos x$ centered at $x=\pi / 2$.
2. Find the Maclaurin series for $f(x)=\sin \left(x^{4}\right)$. You may use either the direct method (definition of a Maclaurin series) or a known Maclaurin series.
3. Find the Maclaurin series for $f(x)=e^{-3 x}$. You may use either the direct method (definition of a Maclaurin series) or a known Maclaurin series.
4. Find the Maclaurin series for $f(x)=x e^{2 x}$. You may use either the direct method (definition of a Maclaurin series) or a known Maclaurin series.
5. Find the Maclaurin series for $f(x)=x^{3} \cos \left(x^{2}\right)$. You may use either the direct method (definition of a Maclaurin series) or a known Maclaurin series.
6. Find the Maclaurin series for $f(x)=\frac{e^{x}-1}{x}$. You may use either the direct method (definition of a Maclaurin series) or a known Maclaurin series.
7. Use the series obtained in the previous problem to evaluate the indefinite integral $\int \frac{e^{x}-1}{x} d x$.
8. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{3^{2 n}(2 n)!}$.
9. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} e^{n}}{n!}$.
10. The graph of $f(x)$ is shown below. Explain why the series

$$
2.8+0.5(x-2)+1.5(x-2)^{2}-0.1(x-2)^{3}+\cdots
$$

is not the Taylor series of f centered at $x=2$.

