Kenyon College paquind@kenyon.edu

Homework 12: Taylor and Maclaurin Series

- 1. Find the Taylor series for $f(x) = \cos x$ centered at $x = \pi/2$.
- 2. Find the Maclaurin series for $f(x) = \sin(x^4)$. You may use either the direct method (definition of a Maclaurin series) or a known Maclaurin series.
- 3. Find the Maclaurin series for $f(x) = e^{-3x}$. You may use either the direct method (definition of a Maclaurin series) or a known Maclaurin series.
- 4. Find the Maclaurin series for $f(x) = xe^{2x}$. You may use either the direct method (definition of a Maclaurin series) or a known Maclaurin series.
- 5. Find the Maclaurin series for $f(x) = x^3 \cos(x^2)$. You may use either the direct method (definition of a Maclaurin series) or a known Maclaurin series.
- 6. Find the Maclaurin series for $f(x) = \frac{e^x 1}{x}$. You may use either the direct method (definition of a Maclaurin series) or a known Maclaurin series.
- 7. Use the series obtained in the previous problem to evaluate the indefinite integral $\int \frac{e^x 1}{x} dx.$
- 8. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{3^{2n}(2n)!}.$
- 9. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n e^n}{n!}.$
- 10. The graph of f(x) is shown below. Explain why the series

$$2.8 + 0.5(x - 2) + 1.5(x - 2)^2 - 0.1(x - 2)^3 + \cdots$$

is not the Taylor series of f centered at x = 2.

