Taylor and Maclaurin Series

Suppose that we have a function y = f(x), and that we want to find a power series representation for f(x) centered at a point x_0 :

$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + a_3 (x - x_0)^3 + \cdots$$

$$f(x_0) = a_0$$

$$f'(x_0) = a_1$$

$$f''(x_0) = 2a_2$$

$$f'''(x_0) = 3 \cdot 2a_3$$

...

$$f^{(k)}(x_0) = k!a_k$$

Conclusion. The power series representation for a function f(x) centered at x_0 (with infinitely many derivatives at x_0) is given by

$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k,$$

where

$$a_k = \frac{f^{(k)}(x_0)}{k!},$$

where $f^{(k)}$ represents the k-th derivative of f. This power series is called the **Taylor** series for the function f centered at x_0 . If $x_0 = 0$, then we call the resulting power series a **Maclaurin series**:

$$f(x) = \sum_{k=0}^{\infty} a_k x^k,$$

where

$$a_k = \frac{f^{(k)}(0)}{k!}.$$

These expressions give us a formula for constructing series representations for functions.

Examples.

- 1. Find the Maclaurin series for $f(x) = e^x$.
- 2. Find the Maclaurin series for $f(x) = e^{3x}$.

3. Find the sum of the series
$$\sum_{n=0}^{\infty} \frac{x^{4n}}{n!}$$
.

- 4. Find the Maclaurin series for $f(x) = \sin x$.
- 5. Find the sum of the series $\sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k+1}}{(2k+1)!}$.
- 6. Find the Maclaurin series for $f(x) = \cos x$.
- 7. Find the Maclaurin series for $f(x) = x \cos x$.
- 8. Find the Taylor series for $f(x) = \ln x$ centered at x = 1.