The Traveling Salesman Problem.

Given a graph with n vertices, having an edge between every pair of vertices, what is the shortest cycle which starts at a particular vertex, visits every other vertex exactly once, and returns to the original vertex?

- 1. One way to solve this problem is to simply enumerate all of the possible Hamilton cycles, determine the total length of each, and choose the shortest. For an *n*-city TSP, there are *n*! total Hamilton cycles. So for *n* sufficiently small, a computer can solve the *n*-city TSP reasonably quickly. However, as *n* increases, the total computation time required to enumerate all *n*! possibilities makes the brute force approach impossible. For example, it would take a 500 MHz computer approximately 7,715 years to solve the 20-city TSP.
- 2. The *Branch and Bound* method significantly reduces the total number of Hamilton cycles that must be checked.
 - In general, the lower bound for the TSP equals the sum of the constants subtracted from the rows and columns of the original cost matrix to obtain a new cost matrix with a 0 in each entry and column.
 - At any stage, as long as the lower bounds for partial tours using c_{ij} are less than the lower bound for tours not using c_{ij} , then we do not need to look at the subtree of possible tours not using c_{ij} .
 - At each stage, we should pick as the next entry on which to branch (use or do not use the entry)the 0 entry whose removal maximizes the increase in the lower bound.
- 3. The *TSP Quick Tour Construction* is a quicker algorithm for obtaining nearminimal tours when the costs are symmetric (i.e. $c_{ij} = c_{ji}$) and the costs satisfy the triangle inequality (i.e. $c_{ik} \leq c_{ij} + c_{jk}$). The Quick Tour is given by the following algorithm:
 - (a) Pick any vertex as a starting circuit C_1 consisting of 1 vertex.
 - (b) Given the k-vertex circuit C_k , $k \ge 1$, find the vertex z_k not on C_k that is closest to a vertex, call it y_k , on C_k .
 - (c) Let C_{k+1} be the k + 1-vertex circuit obtained by inserting z_k immediately in front of y_k in C_k .
 - (d) Repeat the previous two steps until a Hamilton cycle is formed.

Theorem. The cost of the tour generated by the Quick Tour construction is less than twice the cost of the minimal TSP tour.

1

Problems.

1. Solve the TSP using both the Branch and Bound method and the Quick Tour construction for the following cost matrix.

∞	3	3	2	7	3
3	∞	3	4	5	5
3	3	∞	1	4	4
2	4	1	∞	5	5
7	5	4	5	∞	4
3	5	4	5	4	∞

2. Every month a plastics plant must make batches of five different types of plastic toys. There is a conversion cost c_{ij} in switching from the production of toy i to toy j, as shown in the following matrix. Find a sequence of toy production (be be followed for many months) that minimizes the sum of the monthly conversion costs.

∞	3	2	4	3
4	∞	4	5	6
5	3	∞	4	4
3	5	1	∞	6
5	4	2	3	∞

- 3. Find a 3×3 cost matrix for which two different initial lower bounds can be obtained (with different sets of 0 entries) by subtracting from the rows and columns in different orders.
- 4. Make up a 5×5 cost matrix for which the Quick Tour construction finds:
 - (a) An optimal tour.
 - (b) A fairly costly tour (at least 50% over the true minimum).