Math 333
 Tuesday, February 5, 2008 Systems of First-Order Differential Equations

A system of first-order differential equations is a collection of two (or more) differential equations of the form:

$$
\begin{aligned}
\frac{d x}{d t} & =f(t, x, y) \\
\frac{d y}{d t} & =g(t, x, y)
\end{aligned}
$$

The solution of a system of first-order DE's is a pair of functions $(x(t), y(t))$ that satisfies the differential equations above.
We'll consider autonomous systems of the form:

$$
\begin{aligned}
\frac{d x}{d t} & =f(x, y) \\
\frac{d y}{d t} & =g(x, y) .
\end{aligned}
$$

The classical example of a situation in which systems of first-order DE's naturally arise is modeling of predator-prey systems. There are two classic models that we'll consider. For both models, we'll use the following notation:

- $x(t)$ denotes the prey population at time t
- $y(t)$ denotes the predator population at time t
- $\alpha_{x}>0$ denotes the natural growth rate of the prey population (in the absence of predators)
- $\alpha_{y}>0$ denotes the natural death rate of the predator population (in the absence of prey)
- $\gamma_{x}>0$ is a parameter that measures the number of predator-prey interactions in which a prey is eaten
- $\gamma_{y}>0$ is a parameter that measures the benefit to the predator population of eating prey
- N_{x} denotes the maximum sustainable prey population (in the absence of predators)

Model 1: Assume that the prey population follows an exponential growth model in the absence of predators. Then the predator-prey system that models the two populations is:

Model 2: Assume that the prey population follows a logistic growth model in the absence of predators. Then the predator-prey system that models the two populations is:

For now, we'll use graphical techniques to analyze systems of first-order differential equations. There are four main types of graphs that will be useful in analyzing systems of DE's:

- x as a function of t
- y as a function of t
- The phase portrait or phase plane:
- The direction field:

Example: Analyze the predator-prey type system

$$
\begin{aligned}
& \frac{d x}{d t}=2 x-x y \\
& \frac{d y}{d t}=-3 y+x y
\end{aligned}
$$

- Plot $x(t)$ and $y(t)$ for various initial conditions. Interpret the results in terms of the predator-prey population system.
- Draw the phase portrait in the $x y$-plane for various initial conditions. Interpret the results in terms of the predator-prey population system.
- Draw the direction field in the $x y$-plane.
- Find the equilibrium points of the system, and discuss the phase portrait and direction field near each equilibrium point.

