Math 333
 Summary of Results: Second-Order Linear Homogeneous DE's with Constant Coefficients

Consider the second-order linear homogeneous differential equation with constant coefficients:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0, \tag{1}
\end{equation*}
$$

where a, b, and c are real constants with $a \neq 0$. To find the general solution of Eqn. (1), we first solve the characteristic equation:

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{2}
\end{equation*}
$$

1. Suppose that the characteristic equation has two real and distinct roots r_{1} and r_{2}. Then the general solution of the differential equation in Eqn. (1) is:
2. Suppose that the characteristic equation has two complex conjugate roots $r_{1}=\lambda+i \mu$ and $r_{2}=\lambda-i \mu$. Then the general solution of the differential equation in Eqn. (1) is:
3. Suppose that the characteristic equation has a repeated real root $r_{1}=r_{2}=$ $-b / 2 a$. Then the general solution of the differential equation in Eqn. (1) is:
