A Quick Review of Integration

Area Definition.

$$
\int_{a}^{b} f(x) d x=(\text { area above } \mathrm{x} \text {-axis })-\quad(\text { area below } \mathrm{x} \text {-axis })
$$

We'll talk more about the area definition of the definite integral later in the course.
Fundamental Theorem of Calculus, Part 2.

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F(x)$ is any anti-derivative of $f(x)$, i.e. $F(x)$ is any anti-derivative of $f(x)$, i.e. any function such that $F^{\prime}(x)=f(x)$.

Indefinite Integrals (also called Anti-derivatives).

$$
\int f(x) d x=F(x)+C
$$

where $F(x)$ is any anti-derivative of $f(x)$.

Examples

1. Find the area between the graph of $f(x)=x^{2}$ and the x-axis over the interval $[0,4]$.
2. Show that the area under one arch of the sine curve $y=\sin x$ is 2 .
3. Evaluate $\int \frac{3}{x+1} d x$.
4. Evaluate $\int_{0}^{\pi}(1+\cos x) d x$.
5. Evaluate $\int \frac{2}{x^{2}} d x$.
6. Evaluate $\int e^{-3 x} d x$.

Integration by Substitution

Evaluate the following integrals.

1. $\int 2 \cos (2 x+5) d x$
2. $\int \sqrt{3 x-5} d x$
3. $\int-2 x \sqrt[3]{1-x^{2}} d x$
4. $\int \tan ^{2} x \sec ^{2} x d x$
5. $\int \tan x d x$
6. $\int \frac{1}{x^{2}} \cos \frac{1}{x} d x$
7. $\int_{0}^{2} 4 x^{3} \sqrt{x^{4}+7} d x$
8. $\int_{\pi}^{2 \pi} 2 x \cos x^{2} d x$
