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Series Solutions Near a Regular Singular Point

We will now consider solving the equation

P (x)y′′ + Q(x)y′ + R(x)y = 0 (1)

in the neighborhood of a regular singular point x0. For convenience, we’ll assume
that x0 = 0. If x0 6= 0, we can transform the equation into one for which the regular
singular point is 0 by making the change of variables t = x − x0. The key steps in
constructing solutions of Eqn. (1) in the neighborhood of a regular singular point
x0 = 0 are the following.

1. First, divide both sides of Eqn. (1) by P (x) to obtain:

y′′ + p(x)y′ + q(x)y = 0, (2)

where p(x) = Q(x)/P (x) and q(x) = R(x)/P (x).

2. The fact that x0 = 0 is a regular singular point of Eqn. (1) means that

lim
x→0

xQ(x)

P (x)
= lim

x→0
xp(x) is finite and lim

x→0

x2R(x)

P (x)
= lim

x→0
x2q(x) is finite. Thus,

xp(x) and x2q(x) have convergent power series centered at x0 = 0:

• xp(x) =
∞∑

n=0

pnx
n

• x2q(x) =
∞∑

n=0

qnx
n

3. To make the quantities xp(x) and x2q(x) appear in Eqn. (2), we multiply both
sides by x2 to obtain:

x2y′′ + x[xp(x)]y′ + [x2q(x)]y = 0. (3)

4. Using the power series expansions for xp(x) and x2q(x) centered at x0 = 0, we
can rewrite Eqn. (3) as:

x2y′′ + x[p0 + p1x + p2x
2 + · · · ]y′ + [q0 + q1x + q2x

2 + · · · ]y = 0. (4)

5. If all of the coefficients pn and qn are zero, except possibly

p0 = lim
x→0

xp(x)

and
q0 = lim

x→0
x2q(x),

then Eqn. (4) reduces to the Euler equation
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x2y′′ + p0xy′ + q0y = 0, (5)

which we have discussed in detail previously. We call Eqn. (5) the Euler
equation corresponding to Eqn. (1).

6. In general, of course, some of the pn and qn will be non-zero. However, the
essential character of solutions of Eqn. (4) will be the same as that of solutions
of the Euler equation (5). The presence of the terms

p1x + p2x
2 + · · · and q1x + q2x

2 + · · ·

just complicates our calculations.

7. For now, we’ll restrict our discussion to the interval x > 0. The interval x < 0
can be treated in the same way as for the Euler equation by making the change
of variable x = −γ and then solving the resulting equation for γ > 0.

8. The key observation now is that since the coefficients in Eqn. (4) are “Euler
coefficients” times power series, it is natural to guess solutions in the form of
“Euler solutions” times power series. Thus, we look for a solution of the form

y = xr(a0 + a1x + a2x
2 + · · · ) = xr

∞∑
n=0

anx
n =

∞∑
n=0

anx
r+n. (6)

Thus, r is the exponent of the first term in the series, and a0 is its coefficient.

9. To determine the solution, we must find the following:

(a) The values of r for which Eqn. (1) has a solution of the form in (6).

(b) The recurrence relation for the coefficients an.

(c) The radius of convergence of the series.

The general theory was constructed by Ferdinand Georg Frobenius in 1874. Rather
than trying to present the general theory here (which is rather complicated), we’ll
start with an example.

Example. Solve the differential equation

2x2y′′ − xy′ + (1 + x)y = 0. (7)

First, note that x = 0 is a regular singular point of Eqn. (7). Rewriting Eqn. (7) in
the form y′′ + p(x)y′ + q(x)y = 0, we obtain

y′′ − 1

2x
y′ +

(1 + x)

2x2
y = 0.
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Thus,

xp(x) =
−1

2
and x2q(x) =

1 + x

2
=

1

2
+

x

2
.

Thus:

p0 = −1/2

q0 = 1/2

q1 = 1/2

All other pn and qn are equal to zero. Note that the Euler equation corresponding
to Eqn. (7) is then

x2y′′ − 1

2
xy′ +

1

2
y = 0. (8)

To solve Eqn. (7), we assume that there is a solution of the form (6), and compute
y′ and y′′:

y =
∞∑

n=0

anx
r+n

y′ =
∞∑

n=0

an(r + n)xr+n−1

y′′ =
∞∑

n=0

an(r + n)(r + n− 1)xr+n−2

Substituting y, y′, and y′′ in Eqn. (7), we obtain:

2x2y′′ − xy′ + (1 + x)y =
∞∑

n=0

2an(r + n)(r + n− 1)xr+n

−
∞∑

n=0

an(r + n)xr+n +
∞∑

n=0

anx
r+n +

∞∑
n=0

anx
r+n+1

= a0[2r(r − 1)− r + 1]xr

+
∞∑

n=1

[[2(r + n)(r + n− 1)− (r + n) + 1]an + an−1] x
r+n

= 0.

Next, we equate coefficients. From the coefficient of xr, we obtain

2r(r − 1)− r + 1 = (r − 1)(2r − 1) = 0. (9)
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Eqn. (9) is called the indicial equation for Eqn. (7). Note that it is exactly the
same polynomial equation that we would obtain for the Euler equation (8) associated
with Eqn. (7). The roots of the indicial equation are

r1 = 1, r2 = 1/2.

These values of r are called the exponents at the singularity for the regular singular
point x0 = 0. They determine the behavior of the solution in the neighborhood of
the singular point.

Next, we set the coefficient of xr+n equal to 0. This gives the relation

[2(r + n)(r + n− 1)− (r + n) + 1]an + an−1 = 0,

or
an = − an−1

2(r + n)2 − 3(r + n) + 1
, n ≥ 1.

For each root r1 and r2 of the indicial equation, we use this recurrence relation to
determine a set of coefficients a1, a2, . . .. For r = r1 = 1, the recurrence relation
becomes

an = − an−1

(2n + 1)n
,

and we obtain:

a1 = − a0

3 · 1
a2 = − a1

5 · 2
=

a0

(3 · 5)(1 · 2)

a3 = − a2

7 · 3
= − a0

(3 · 5 · 7)(1 · 2 · 3)

an =
(−1)na0

[3 · 5 · 7 · · · (2n + 1)]n!

=
(−1)n2na0

(2n + 1)!

To get the last line, we multiply the numerator and denominator of the previous line
by 2 · 4 · 6 · · · 2n = 2nn!. Thus, one solution of Eqn.(7) is given by:

y1(x) = x1

[
∞∑

n=0

(−1)n2n

(2n + 1)!
xn

]
, x > 0

where we have omitted the arbitrary constant multiplier a0. We can use the ratio
test to show that this series converges for all x.

We proceed similarly for the second root r = r2 = 1
2
. The recurrence relation becomes

an = − an−1

n(2n− 1)
,
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and we obtain:

a1 = − a0

1 · 1
a2 = − a1

2 · 3
=

a0

(1 · 2)(1 · 3)

a3 = − a2

3 · 5
= − a0

(1 · 2 · 3)(1 · 3 · 5)

an =
(−1)na0

n![1 · 3 · 5 · 7 · · · (2n− 1)]

=
(−1)n2na0

(2n)!

To get the last line, we multiply the numerator and denominator of the previous
line by 2nn!. Thus, again omitting the constant multiplier a0,we obtain the second
solution:

y2(x) = x1/2

[
∞∑

n=0

(−1)n2n

(2n!)
xn

]
, x > 0.

As before, we can use the Ratio Test to show that the series converges for all x.
Since the leading terms in the series solutions y1 and y2 are x and x1/2, respectively,
the solutions are linearly independent. Thus, the general solution of Eqn. (7) is

y(x) = c1y1(x) + c2y2(x), x > 0.

This example illustrates that if x = 0 is a regular singular point, then sometimes
there are two solutions of the form (6) in the neighborhood of this point. Similarly,
if there is a regular singular point at x = x0, then there may be two solutions of the
form

y = (x− x0)
r

∞∑
n=0

an(x− x0)
n (10)

that are valid near x = x0. However, just as an Euler equation may not have two
solutions of the form y = xr, so a more general equation with a regular singular point
may not have two solutions of the form (6) or (10). In particular, if the roots r1 and
r2 are equal, or differ by an integer, then the second solution has a more complicated
structure. In all cases, though, it is possible to find at least one solution of the form
(6) or (10); if r1 and r2 differ by an integer, then this solution corresponds to the
larger value of r. If there is only one such solution, then the second solution involves
a logarithmic term, just as for the Euler equation when the roots of the characteristic
equation are equal. The method of reduction of order can be used to determine the
second solution in such cases. If the roots of the indicial equation are complex, then
they cannot be equal or differ by an integer, so there are always two solutions of the
form (6) or (10) that we can express as real-valued solutions.
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