Math 333
 Outline: Series Solutions of Differential Equations

The general procedure for finding a series solution of a second-order linear homogeneous differential equations of the form

$$
\begin{equation*}
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 \tag{1}
\end{equation*}
$$

is the following:

1. Guess a series solution of Eqn. (1) of the form

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots
$$

around an ordinary point x_{0}. An ordinary point is any point x_{0} such that $P\left(x_{0}\right) \neq 0$.
2. Compute y^{\prime} and $y^{\prime \prime}$ as follows:

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1} \\
& =\sum_{n=0}^{\infty}(n+1) a_{n+1}\left(x-x_{0}\right)^{n} \\
& =a_{1}+2 a_{2}\left(x-x_{0}\right)+3 a_{3}\left(x-x_{0}\right)^{2}+\cdots \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n}\left(x-x_{0}\right)^{n-2} \\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}\left(x-x_{0}\right)^{n} \\
& =2 a_{2}+3 \cdot 2 a_{3}\left(x-x_{0}\right)+\cdots
\end{aligned}
$$

3. Substitute y, y^{\prime}, and $y^{\prime \prime}$ into Eqn. (1) to determine the coefficients a_{n} so that the function $y(x)$ actually satisfies the differential equation. This will usually require finding one or more recurrence relations for the coefficients a_{n}. Remember that $a_{0}=y(0)$ and $a_{1}=y^{\prime}(0)$, so a_{0} and a_{1} are arbitrary constants.
