Math 333
 Series Solutions Near an Ordinary Point

We now consider methods of solving second order homogeneous linear differential equations when the coefficients are functions of the independent variable:

$$
\begin{equation*}
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 . \tag{1}
\end{equation*}
$$

We will primarily consider the case in which the functions P, Q, and R are polynomials. However, the method of solution that we will develop is also applicable when P, Q, and R are general analytic functions. For now, suppose that P, Q, and R are polynomials and that they have no common factors. Suppose also that we wish to solve Eqn. (1) in a neighborhood of some point x_{0}. The solution of Eqn. (1) in an interval containing x_{0} is closely associated with the behavior of P in that interval.

A point x_{0} such that $P\left(x_{0}\right) \neq 0$ is called an ordinary point. Since P is continuous, it follow that there is an interval about x_{0} in which $P(x)$ is never zero. In that interval, we can divide Eqn. (1) by $P(x)$ to obtain

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

where $p(x)=Q(x) / P(x)$ and $q(x)=R(x) / P(x)$ are continuous functions. Hence, according to the Existence and Uniqueness Theorem that we have studied previously, there exists in that interval a unique solution of Eqn. (1) that also satisfies the initial conditions $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$.

If $P\left(x_{0}\right)=0$, then x_{0} is called a singular point of x_{0}, and at least one of the coefficients p and q in Eqn. (2) becomes unbounded as $x \rightarrow x_{0}$, so the Existence and Uniqueness Theorem does not apply.

For now, we'll consider the problem of solving Eqn. (1) in the neighborhood of an ordinary point x_{0}. We'll return later to the problem of finding solutions of Eqn. (1) in the neighborhood of a singular point.

We look for solutions of Eqn. (1) of the form

$$
y=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+\cdots=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n},
$$

and assume that the series converges in the interval $\left|x-x_{0}\right|<R$ for some $R>0$.

Examples.

1. Find a series solution of the equation

$$
y^{\prime \prime}+y=0, \quad-\infty<x<\infty
$$

Solution. $y(x)=a_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n!)} x^{2 n}+a_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}=a_{0} \cos x+a_{1} \sin x$
2. Hermite's equation. Consider the second-order differential equation

$$
y^{\prime \prime}-2 x y^{\prime}+2 p y=0
$$

where p is a numerical parameter. See Appendix B in your textbook for more discussion of this example.
Solution. We obtain $a_{2}=-p a_{0}$. The general recurrence relation is $a_{n+2}=$ $\frac{-2(p-n) a_{n}}{(n+1)(n+2)}$. Since a_{n+2} is given in terms of a_{n}, the a_{n} 's will be determined in steps of 2 :

- a_{0} determines a_{2}, which determines a_{4}, which determines a_{6}, etc.
- a_{1} determines a_{3}, which determines a_{5}, which determines a_{7}, etc.

We obtain

$$
\begin{aligned}
& a_{2}=-p a_{0} \\
& a_{3}=\frac{-2(p-1) a_{1}}{2 \cdot 3} \\
& a_{4}=\frac{-2(p-2) a_{2}}{3 \cdot 4}=\frac{2 p(p-2) a_{0}}{3 \cdot 4} \\
& a_{5}=\frac{-2(p-3) a_{3}}{4 \cdot 5}=\frac{2(p-1)(p-3) a_{1}}{3 \cdot 4 \cdot 5},
\end{aligned}
$$

etc.
(a) Find the particular solution of Hermite's equation with $p=0$ that satisfies $y(0)=1, y^{\prime}(0)=0$.
Solution. The particular solution is $y(x)=1$.
(b) Find the particular solution of Hermite's equation with $p=1$ that satisfies $y(0)=0, y^{\prime}(0)=1$.
Solution. The particular solution is $y(x)=x$.
(c) Find the particular solution of Hermite's equation with $p=2$ that satisfies $y(0)=1, y^{\prime}(0)=0$.
Solution. The particular solution is $y(x)=1-2 x^{2}$.

In general, it can be shown that if p is a positive even integer and $\left(y(0), y^{\prime}(0)\right)=$ $(1,0)$, then the resulting series solution has only finitely many nonzero terms. The same holds if p is a positive odd integer and $\left(y(0), y^{\prime}(0)\right)=(0,1)$. These solutions are called the Hermite polynomials $H_{p}(x)$. We have shown that the first three Hermite polynomials are $H_{0}(x)=1, H_{1}(x)=x, H_{2}(x)=1-2 x^{2}$, and we can easily construct many more.
3. Find a series solution in powers of x of Airy's equation

$$
y^{\prime \prime}-x y=0, \quad-\infty<x<\infty
$$

Solution. The general recurrence relation is $(n+2)(n+1) a_{n+2}=a_{n-1}$. Thus, we obtain

$$
\begin{gathered}
a_{3 n+2}=0 \\
a_{3 n}=\frac{a_{0}}{2 \cdot 3 \cdot 5 \cdot 6 \cdots(3 n-1)(3 n)}
\end{gathered}
$$

and

$$
a_{3 n+1}=\frac{a_{1}}{3 \cdot 4 \cdot 6 \cdot 7 \cdots(3 n)(3 n+1)} .
$$

The general solution is

$$
\begin{aligned}
& y(x)=a_{0}\left[1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{2 \cdot 3 \cdot 5 \cdot 6}+\cdots+\frac{x^{3 n}}{2 \cdot 3 \cdot 4 \cdots(3 n-1)(3 n)}+\cdots\right] \\
& \quad+a_{1}\left[x+\frac{x^{4}}{3 \cdot 4}+\frac{x^{7}}{3 \cdot 4 \cdot 6 \cdot 7}+\cdots+\frac{x^{3 n+1}}{3 \cdot 4 \cdots(3 n)(3 n+1)}+\cdots\right]
\end{aligned}
$$

4. Find a solution of Airy's equation in powers of $x-1$.

Solution. The general recurrence relation is $(n+2)(n+1) a_{n+2}=a_{n}+a_{n-1}$. The general solution is

$$
\begin{aligned}
y(x) & =a_{0}\left[1+\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{6}+\frac{(x-1)^{4}}{24}+\frac{(x-1)^{5}}{30}+\cdots\right] \\
& +a_{1}\left[(x-1)+\frac{(x-1)^{3}}{6}+\frac{(x-1)^{4}}{12}+\frac{(x-1)^{5}}{120}+\cdots\right] .
\end{aligned}
$$

In general, when the recurrence relation has more than two terms, the determination of a formula for a_{n} in terms of a_{0} and a_{1} will be fairly complicated, if not impossible. In this example, such a formula is not readily apparent.

