
Kenyon College April 8, 2008 paquind@kenyon.edu

Math 333
Series Solutions Near an Ordinary Point

We now consider methods of solving second order homogeneous linear differential
equations when the coefficients are functions of the independent variable:

P (x)y′′ + Q(x)y′ + R(x)y = 0. (1)

We will primarily consider the case in which the functions P , Q, and R are polyno-
mials. However, the method of solution that we will develop is also applicable when
P , Q, and R are general analytic functions. For now, suppose that P , Q, and R are
polynomials and that they have no common factors. Suppose also that we wish to
solve Eqn. (1) in a neighborhood of some point x0. The solution of Eqn. (1) in an
interval containing x0 is closely associated with the behavior of P in that interval.

A point x0 such that P (x0) 6= 0 is called an ordinary point. Since P is continuous,
it follow that there is an interval about x0 in which P (x) is never zero. In that
interval, we can divide Eqn. (1) by P (x) to obtain

y′′ + p(x)y′ + q(x)y = 0, (2)

where p(x) = Q(x)/P (x) and q(x) = R(x)/P (x) are continuous functions. Hence,
according to the Existence and Uniqueness Theorem that we have studied previously,
there exists in that interval a unique solution of Eqn. (1) that also satisfies the initial
conditions y(x0) = y0 and y′(x0) = y′0.

If P (x0) = 0, then x0 is called a singular point of x0, and at least one of the
coefficients p and q in Eqn. (2) becomes unbounded as x → x0, so the Existence and
Uniqueness Theorem does not apply.

For now, we’ll consider the problem of solving Eqn. (1) in the neighborhood of an
ordinary point x0. We’ll return later to the problem of finding solutions of Eqn. (1)
in the neighborhood of a singular point.

We look for solutions of Eqn. (1) of the form

y = a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n + · · · =
∞∑

n=0

an(x− x0)
n,

and assume that the series converges in the interval |x− x0| < R for some R > 0.
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Examples.

1. Find a series solution of the equation

y′′ + y = 0, −∞ < x < ∞.

Solution. y(x) = a0

∞∑
n=0

(−1)n

(2n!)
x2n + a1

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1 = a0 cos x + a1 sin x

2. Hermite’s equation. Consider the second-order differential equation

y′′ − 2xy′ + 2py = 0,

where p is a numerical parameter. See Appendix B in your textbook for more
discussion of this example.

Solution. We obtain a2 = −pa0. The general recurrence relation is an+2 =
−2(p− n)an

(n + 1)(n + 2)
. Since an+2 is given in terms of an, the an’s will be determined

in steps of 2:

• a0 determines a2, which determines a4, which determines a6, etc.

• a1 determines a3, which determines a5, which determines a7, etc.

We obtain

a2 = −pa0

a3 =
−2(p− 1)a1

2 · 3

a4 =
−2(p− 2)a2

3 · 4
=

2p(p− 2)a0

3 · 4

a5 =
−2(p− 3)a3

4 · 5
=

2(p− 1)(p− 3)a1

3 · 4 · 5
,

etc.

(a) Find the particular solution of Hermite’s equation with p = 0 that satisfies
y(0) = 1, y′(0) = 0.

Solution. The particular solution is y(x) = 1.

(b) Find the particular solution of Hermite’s equation with p = 1 that satisfies
y(0) = 0, y′(0) = 1.

Solution. The particular solution is y(x) = x.

(c) Find the particular solution of Hermite’s equation with p = 2 that satisfies
y(0) = 1, y′(0) = 0.

Solution. The particular solution is y(x) = 1− 2x2.
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In general, it can be shown that if p is a positive even integer and (y(0), y′(0)) =
(1, 0), then the resulting series solution has only finitely many nonzero terms.
The same holds if p is a positive odd integer and (y(0), y′(0)) = (0, 1). These
solutions are called the Hermite polynomials Hp(x). We have shown that the
first three Hermite polynomials are H0(x) = 1, H1(x) = x, H2(x) = 1 − 2x2,
and we can easily construct many more.

3. Find a series solution in powers of x of Airy’s equation

y′′ − xy = 0, −∞ < x < ∞.

Solution. The general recurrence relation is (n + 2)(n + 1)an+2 = an−1. Thus,
we obtain

a3n+2 = 0

,

a3n =
a0

2 · 3 · 5 · 6 · · · (3n− 1)(3n)
,

and
a3n+1 =

a1

3 · 4 · 6 · 7 · · · (3n)(3n + 1)
.

The general solution is

y(x) = a0

[
1 +

x3

2 · 3
+

x6

2 · 3 · 5 · 6
+ · · ·+ x3n

2 · 3 · 4 · · · (3n− 1)(3n)
+ · · ·

]

+a1

[
x +

x4

3 · 4
+

x7

3 · 4 · 6 · 7
+ · · ·+ x3n+1

3 · 4 · · · (3n)(3n + 1)
+ · · ·

]
.

4. Find a solution of Airy’s equation in powers of x− 1.

Solution. The general recurrence relation is (n + 2)(n + 1)an+2 = an + an−1.
The general solution is

y(x) = a0

[
1 +

(x− 1)2

2
+

(x− 1)3

6
+

(x− 1)4

24
+

(x− 1)5

30
+ · · ·

]

+a1

[
(x− 1) +

(x− 1)3

6
+

(x− 1)4

12
+

(x− 1)5

120
+ · · ·

]
.

In general, when the recurrence relation has more than two terms, the determi-
nation of a formula for an in terms of a0 and a1 will be fairly complicated, if
not impossible. In this example, such a formula is not readily apparent.
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