Introduction to Series

Definition. A series is an infinite sum of the form

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{2}+\ldots+a_{n}+a_{n+1}+\cdots
$$

or

$$
\sum_{n=0}^{\infty} a_{n}=a_{0}+a_{1}+a_{2}+a_{2}+\ldots+a_{n}+a_{n+1}+\cdots
$$

Example 1. $\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots$
Example 2. $\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}=1+\frac{1}{2}+\frac{1}{5}+\cdots$
We will be interested in thinking about the following questions:

- What does it mean to add up infinitely many numbers?
- Which series converge (i.e. add up to a finite number)? Which series diverge (i.e. go to infinity)?
- How do series relate to functions and the other topics studied in Calculus?

Example 3. Use a geometric argument to show that

$$
\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}=2
$$

Some definitions and terminology. Let

$$
\sum_{k=0}^{\infty} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+\cdots
$$

be an infinite series. The summand a_{k} is called the k-th term of the series. The sum of the first n terms of the series is called the n-th partial sum of the series, and is denoted by S_{n} :

$$
S_{n}=a_{0}+a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{k=0}^{n} a_{k}
$$

The definition of convergence of an infinite series involves the partial sums S_{n}.
Definition. If

$$
\lim _{n \rightarrow \infty} S_{n}=S
$$

for some finite number S, then the series

$$
\sum_{k=0}^{\infty} a_{k}
$$

converges to the limit S. Otherwise, the series diverges.
Example 4. Use the definition above to show that

$$
\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}=2
$$

Example 5. Telescoping series. Use the definition above to show that

$$
\sum_{k=1}^{\infty} \frac{1}{k(k+1)}
$$

converges to 1 .
Example 6. Discuss the series

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

This series is called the harmonic series. Can we use the definition to determine whether or not the series converges?

The n-th term test for divergence. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=0}^{\infty} a_{n}$ diverges.
Example 7. Does the series

$$
\sum_{k=1}^{\infty} \frac{2 k^{2}-3 k+1}{k^{2}+4}
$$

converge or diverge?
Example 8. Does the series

$$
\sum_{k=1}^{\infty}(-1)^{k}
$$

converge or diverge?

