Math 333
 Tuesday, April 15, 2008
 Graphing Series Solutions

We have been studying series solutions of equations of the form

$$
\begin{equation*}
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 \tag{1}
\end{equation*}
$$

where $P(x), Q(x), R(x)$ are polynomial functions of x (or, in general, analytic functions of x). Our strategy is to look for solutions of Eqn. (1) of the form

$$
y=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+\cdots=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n},
$$

around an ordinary point x_{0}, and assume that the series converges in the interval $\left|x-x_{0}\right|<R$ for some $R>0$. Next, we'll consider how to graphically represent series solutions, and discuss the role of the center x_{0} of the series solution.

Example. Previously, we have used series techniques to find the general solution of the differential equation

$$
y^{\prime \prime}+y=0
$$

We have shown that the general solution is given by the series

$$
y(x)=a_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n!)} x^{2 n}+a_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
$$

centered at $x_{0}=0$. Using known Maclaurin series, we identified the solution as

$$
y(x)=a_{0} \cos x+a_{1} \sin x
$$

Let $y(0)=a_{0}=1$ and $y^{\prime}(0)=a_{1}=1$ and graph partial sums (polynomial approximations)

$$
\sum_{n=N}^{\infty} \frac{(-1)^{n}}{(2 n!)} x^{2 n}+\sum_{n=N}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
$$

of the solution for various values of N on the same set of axes as the known exact solution

$$
\cos x+\sin x
$$

See the Maple file SeriesPlots posted on the Course Schedule page and on the P: drive for help with the syntax. In Figure, we illustrate the polynomial approximations for $N=2$ and $N=5$ on the same set of axes as the exact solution $y=\cos x+\sin x$.
Observe that as the number of terms in the partial sums increases, the interval over which the approximation is satisfactory becomes larger, and for each x in this

Figure 1: Partial sum approximations with $N=2$ (left) and $N=5$ (right).
interval, the accuracy of the approximation improves. However, the truncated power series provides only a local approximation of the solution in a neighborhood of the point $x_{0}=0$; a truncated power series cannot adequately represent the solution for large $|x|$.

In general, when we use series techniques to obtain a series solution

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots
$$

centered at $x=x_{0}$, we must use partial sums of the form

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{N}\left(x-x_{0}\right)^{N}
$$

to obtain graphical and/or numerical representations of the solution. It is important to remember that such partial sums provide only a local approximation of the solution in a neighborhood of the point x_{0}; a truncated power series cannot adequately represent the solution when $\mid x-x_{0}$ is large. As N (the number of terms used in the partial sum) increases, the interval over which the approximation is satisfactory becomes larger.

