Sequences Practice Problems

For each of the following problems, determine whether the sequence $\left\{a_{n}\right\}$ converges or diverges. If the sequence converges, find its limit.

1. $a_{n}=\frac{3+5 n^{2}}{n+n^{2}}$
2. $a_{n}=\frac{n+1}{3 n-1}$
3. $a_{n}=\frac{2^{n}}{3^{n+1}}$
4. $a_{n}=\frac{\sqrt{n}}{1+\sqrt{n}}$
5. $a_{n}=\frac{(n+2)!}{n!}$
6. $a_{n}=\frac{n}{1+\sqrt{n}}$
7. $a_{n}=\frac{(-1)^{n-1} n}{1+n^{2}}$
8. $a_{n}=\frac{(-1)^{n} n^{3}}{n^{3}+2 n^{2}+1}$
9. $a_{n}=\frac{e^{n}+e^{-n}}{e^{2 n}-1}$
10. $a_{n}=\cos \left(\frac{2}{n}\right)$
11. $a_{n}=n^{2} e^{-n}$
12. $a_{n}=\frac{\cos ^{2} n}{2^{n}}$
13. $a_{n}=n \cos n \pi$
14. $a_{n}=\frac{\sin (2 n)}{1+\sqrt{n}}$
15. $a_{n}=\frac{(\ln n)^{2}}{n}$
16. $a_{n}=\left(\ln \left(2 n^{2}+1\right)-\ln \left(n^{2}+1\right)\right)$
17. $a_{n}=\frac{(-1)^{n} n}{n+1}$
18. $a_{n}=2+\left(\frac{-2}{\pi}\right)^{n}$
19. (a) Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{1}=1, \quad a_{n+1}=4-a_{n}
$$

for $n \geq 1$. Is the sequence convergent or divergent?
(b) What happens if the first term is $a_{1}=2$?
20. Consider the sequence defined by

$$
a_{1}=2, \quad a_{n+1}=\frac{1}{3-a_{n}}
$$

for $n \geq 1$. Use the Monotonic Sequence Theorem to show that the sequence is convergent.

