Sequences

Definition. A sequence is an infinite list of numbers

 $a_1, a_2, a_3, \ldots, a_k, a_{k+1}, \ldots$

Individual entries are called the **terms** of the sequence. **Notation.** We will use the following standard notation for sequences:

$${a_n}_{n=1}^{\infty} = {a_n} = a_1, a_2, a_3, \dots$$

Example 1. Consider the sequence $\{a_n\}$ defined by

$$a_n = \frac{1}{n}.$$

What is a_1 ? What is a_2 ? What is a_5 ? What is a_{100} ?

Definition. A sequence a_n has **limit** L if

$$\lim_{n \to \infty} a_n = L$$

or

$$a_n \to L \text{ as } n \to \infty.$$

This means that we can make the terms a_n arbitrarily close to L by making n sufficiently large. If $\lim_{n\to\infty} a_n$ exists (and is equal to a real number), we say that the sequence $\{a_n\}$ converges (or is convergent). Otherwise, we say that the sequence diverges (or is divergent).

Example 2. Consider the sequence $\{a_n\}$ defined by

$$a_n = \frac{1}{n}.$$

Find $\lim a_n$. Does the sequence $\{a_n\}$ converge or diverge?

Example 3. Consider the sequence $\{a_n\}$ defined by

$$a_n = n + 2.$$

Find $\lim_{n\to\infty} a_n$. Does the sequence $\{a_n\}$ converge or diverge?

Example 4. Consider the sequence $\{a_n\}$ defined by

$$a_n = (-1)^n$$

Find $\lim a_n$. Does the sequence $\{a_n\}$ converge or diverge?

Math 112: Calculus B

Example 5. Consider the sequence $\{a_n\}$ defined by

$$a_n = \left(\frac{1}{4}\right)^n.$$

Find $\lim_{n\to\infty} a_n$. Does the sequence $\{a_n\}$ converge or diverge?

Example 6. Consider the sequence $\{a_n\}$ defined by

$$a_n = 4^n$$

Find $\lim_{n\to\infty} a_n$. Does the sequence $\{a_n\}$ converge or diverge?

Example 7. For what values of r is the sequence $\{a_n\}$ defined by

$$a_n = r^n$$

convergent?

The following theorems are useful for evaluating limits.

Theorem. Suppose that f(x) is a function such that $f(n) = a_n$ for all integers $n \ge 1$. If

$$\lim_{x \to \infty} f(x) = L,$$

then

$$\lim_{n \to \infty} a_n = L.$$

Theorem: Algebra with limits. Suppose that $\{a_n\}$ and $\{b_n\}$ are convergent sequences with

$$\lim_{n \to \infty} a_n = L \text{ and } \lim_{n \to \infty} b_n = M.$$

Let c be any real constant. Then:

- $\lim_{n \to \infty} (a_n + b_n) = L + M$
- $\lim_{n \to \infty} (a_n b_n) = L M$
- $\lim_{n \to \infty} (ca_n) = cL$

•
$$\lim_{n \to \infty} (a_n b_n) = LM$$

• $\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{L}{M}$ if $M \neq 0$

Example 8. Consider the sequence $\{a_n\}$ defined by

$$a_n = \frac{2^n}{n^2}.$$

Find $\lim_{n\to\infty} a_n$. Does the sequence $\{a_n\}$ converge or diverge?

Example 9. Consider the sequence $\{a_n\}$ defined by

$$a_n = \frac{1}{n} + \frac{3n}{n+1}.$$

Find $\lim_{n\to\infty} a_n$. Does the sequence $\{a_n\}$ converge or diverge?

Example 10. Consider the sequence $\{a_n\}$ defined by

$$a_n = \frac{\ln n}{n+2}.$$

Find $\lim_{n\to\infty} a_n$. Does the sequence $\{a_n\}$ converge or diverge?

Example 11. Consider the sequence $\{a_n\}$ defined by

$$a_n = \left(1 + \frac{2}{n}\right)^n.$$

Find $\lim_{n\to\infty} a_n$. Does the sequence $\{a_n\}$ converge or diverge?