Sequences

Definition. A sequence is an infinite list of numbers

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{k}, a_{k+1}, \ldots
$$

Individual entries are called the terms of the sequence.
Notation. We will use the following standard notation for sequences:

$$
\left\{a_{n}\right\}_{n=1}^{\infty}=\left\{a_{n}\right\}=a_{1}, a_{2}, a_{3},, \ldots
$$

Example 1. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n}=\frac{1}{n} .
$$

What is a_{1} ? What is a_{2} ? What is a_{5} ? What is a_{100} ?
Definition. A sequence a_{n} has limit L if

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

or

$$
a_{n} \rightarrow L \text { as } n \rightarrow \infty .
$$

This means that we can make the terms a_{n} arbitrarily close to L by making n sufficiently large. If $\lim _{n \rightarrow \infty} a_{n}$ exists (and is equal to a real number), we say that the sequence $\left\{a_{n}\right\}$ converges (or is convergent). Otherwise, we say that the sequence diverges (or is divergent).

Example 2. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n}=\frac{1}{n} .
$$

Find $\lim _{n \rightarrow \infty} a_{n}$. Does the sequence $\left\{a_{n}\right\}$ converge or diverge?
Example 3. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n}=n+2 .
$$

Find $\lim _{n \rightarrow \infty} a_{n}$. Does the sequence $\left\{a_{n}\right\}$ converge or diverge?
Example 4. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n}=(-1)^{n} .
$$

Find $\lim _{n \rightarrow \infty} a_{n}$. Does the sequence $\left\{a_{n}\right\}$ converge or diverge?

Example 5. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n}=\left(\frac{1}{4}\right)^{n} .
$$

Find $\lim _{n \rightarrow \infty} a_{n}$. Does the sequence $\left\{a_{n}\right\}$ converge or diverge?
Example 6. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n}=4^{n} .
$$

Find $\lim _{n \rightarrow \infty} a_{n}$. Does the sequence $\left\{a_{n}\right\}$ converge or diverge?
Example 7. For what values of r is the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n}=r^{n}
$$

convergent?
The following theorems are useful for evaluating limits.
Theorem. Suppose that $f(x)$ is a function such that $f(n)=a_{n}$ for all integers $n \geq 1$. If

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

then

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

Theorem: Algebra with limits. Suppose that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences with

$$
\lim _{n \rightarrow \infty} a_{n}=L \text { and } \lim _{n \rightarrow \infty} b_{n}=M
$$

Let c be any real constant. Then:

- $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=L+M$
- $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=L-M$
- $\lim _{n \rightarrow \infty}\left(c a_{n}\right)=c L$
- $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=L M$
- $\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{L}{M}$ if $M \neq 0$

Example 8. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n}=\frac{2^{n}}{n^{2}}
$$

Find $\lim _{n \rightarrow \infty} a_{n}$. Does the sequence $\left\{a_{n}\right\}$ converge or diverge?
Example 9. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n}=\frac{1}{n}+\frac{3 n}{n+1} .
$$

Find $\lim _{n \rightarrow \infty} a_{n}$. Does the sequence $\left\{a_{n}\right\}$ converge or diverge?
Example 10. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n}=\frac{\ln n}{n+2} .
$$

Find $\lim _{n \rightarrow \infty} a_{n}$. Does the sequence $\left\{a_{n}\right\}$ converge or diverge?
Example 11. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n}=\left(1+\frac{2}{n}\right)^{n} .
$$

Find $\lim _{n \rightarrow \infty} a_{n}$. Does the sequence $\left\{a_{n}\right\}$ converge or diverge?

