Math 112
 Integrals as Riemann Sums

Suppose that we want to find

$$
\int_{a}^{b} f(x) d x
$$

using Riemann sums. Remember that $\int_{a}^{b} f(x) d x$ is the signed area of the region bounded by the graph of $f(x)$ and the vertical lines $x=a$ and $x=b$.

1. Start by dividing the interval $[a, b]$ into n equal subintervals. Note that the width of each subinterval is

$$
\Delta x=\frac{b-a}{n} .
$$

2. Next, choose an x-value in each subinterval. We'll let x_{i} denote the x-value that we've chosen in the i-th subinterval. For example, x_{i} might be the left endpoint of the i-th subinterval, or it might be the right endpoint of the i-the subinterval, or it might be the midpoint of the i-th subinterval, or it might be another point altogether.
3. In each subinterval, draw the rectangle with height $f\left(x_{i}\right)$.
4. Add up the areas of all of the rectangles. This gives an approximation for the integral $\int_{a}^{b} f(x) d x$. In symbols:

$$
\int_{a}^{b} f(x) d x \approx\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x\right.
$$

Using sigma notation, we can write this as:

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Remember that $\Delta x=\frac{b-a}{n}$.
5. To find the exact value for the integral (i.e. the area), let the number of rectangles used go to infinity:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where x_{i} is any point in the i-th sub-interval. For consistency and ease of notation, we will typically take x_{i} to be the right (or left, if you prefer) endpoint of the i-th subinterval. Using right endpoints, we can rewrite the previous Riemann sum as:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(a+\frac{i(b-a)}{n}\right) \frac{b-a}{n},
$$

where we have used that $\Delta x=\frac{b-a}{n}$. If you want to use left endpoints, then the Riemann sum becomes:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(a+\frac{(i-1)(b-a)}{n}\right) \frac{b-a}{n} .
$$

Note that these two expressions will give you the same result for the integral! When you are working with sums of this form, remember that i is your index of summation, so anything that does not involve i (e.g. constants or expressions involving n) can be pulled out of the sum.

Example. Evaluate $\int_{1}^{4} x d x$ by computing the limit of right $\operatorname{sums} R_{n}$.

