Volumes of Solids of Revolution

- Disk Method: Representative rectangle is perpendicular to the axis of revolution. R is the radius of a representative disk.

1. Horizontal Axis of Revolution

$$
V=\pi \int_{a}^{b}[R(x)]^{2} d x
$$

2. Vertical Axis of Revolution

$$
V=\pi \int_{c}^{d}[R(y)]^{2} d y
$$

- Washer Method: Representative rectangle is perpendicular to the axis of revolution. R is the outer radius of a representative washer and r is the inner radius of a representative washer.

1. Horizontal Axis of Revolution

$$
V=\pi \int_{a}^{b}\left([R(x)]^{2}-[r(x)]^{2}\right) d x
$$

2. Vertical Axis of Revolution

$$
V=\pi \int_{c}^{d}\left([R(y)]^{2}-[r(y)]^{2}\right) d y
$$

Examples.

1. Find the volume of the solid formed when the region bounded by $y=x^{2}, x=0$, and $x=1$ is revolved about the x-axis.
2. The region between the graph of $f(x)=\sin x \cos x$ and the x-axis over the interval $[0, \pi / 2]$ is revolved about the x-axis. Find the volume of the resulting solid.
3. Find the volume of the solid formed when the region bounded by $y=x^{2}, y=1$, and the line $x=0$ is revolved about the y-axis.
4. The region in the first quadrant enclosed by the y-axis and the graphs of $y=$ $\cos x$ and $y=\sin x$ is revolved about the x-axis. Find the volume of the resulting solid.
5. The region enclosed by the curves $y=x$ and $y=x^{2}$ is revolved about the x-axis. Find the volume of the resulting solid.
6. The region enclosed by the curves $y=x$ and $y=x^{2}$ is revolved about the line $y=2$. Find the volume of the resulting solid.
7. The region enclosed by the curves $y=x$ and $y=x^{2}$ is revolved about the line $x=-1$. Find the volume of the resulting solid.
