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Abstract

Adaptive radiation therapy (ART) is the incorporation of daily images in
the radiotherapy treatment process so that the treatment plan can be evalu-
ated and modified to maximize the amount of radiation dose to the tumor while
minimizing the amount of radiation delivered to healthy tissue. Registration
of planning images with daily images is thus an important component of ART.
In this paper, we report our research on multiscale registration of planning
CT images with daily CBCT images. The multiscale algorithm is based on
the hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and
L. Vese, A multiscale image representation using hierarchical (BV, L?) decom-
positions, Multiscale Modeling and Simulations, vol. 2, no. 4, pp. 554-579,
2004. Registration is achieved by decomposing the images to be registered into
a series of scales using the (BV, L?) decomposition and initially registering the
coarsest scales of the image using a landmark-based registration algorithm.
The resulting transformation is then used as a starting point to deformably
register the next coarse scales with one another. This procedure is iterated,
at each stage using the transformation computed by the previous scale reg-
istration as the starting point for the current registration. We present the
results of studies of rectum, head-neck, and prostate CT-CBCT registration,
and validate our registration method quantitatively using synthetic results in
which the exact transformations our known, and qualitatively using clinical
deformations in which the exact results are not known.

1 Introduction

Image registration is the process of determining the optimal spatial transformation
that brings two images into alignment with one another. More precisely, given two
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images A(z) and B(x), image registration is the process of determining the optimal
spatial transformation ¢ such that A(z) and B(¢(x)) are similar. Image registra-
tion is necessary, for example, for images taken at different times, from different
perspectives, or from different imaging devices. Applications of image registration
include image-guided radiation therapy (IGRT), intensity-modulated radiation ther-
apy (IMRT), image-guided surgery, functional MRI analysis, and tumor detection, as
well as many non-medical applications, such as computer vision, pattern recognition,
and remotely sensed data processing. See [1], [2], [3], [4] for an overview of image
registration. Our focus in this paper is registration of computed tomography (CT)
and cone beam computed tomography (CBCT) images for image-guided radiation
therapy.

Image-guided radiation therapy (IGRT) is the use of patient imaging before and
during treatment to increase the accuracy and efficacy of radiation treatment. The
goals of IGRT are to increase the radiation dose to the tumor, while minimizing the
amount of healthy tissue exposed to radiation. As imaging techniques and external
beam radiation delivery methods have advanced, IGRT (used in conjunction with
IMRT) has become increasingly important in treating cancer patients. Numerous
clinical studies and simulations have demonstrated that such treatments can decrease
both the spread of cancer in the patient and reduce healthy tissue complications [5],
[6], [7].

IGRT is typically implemented in the following way. CT images are obtained sev-
eral days or weeks prior to treatment, and are used for planning dose distributions,
patient alignment, and radiation beam optimization. Immediately prior to treat-
ment, CBCT images are obtained in the treatment room and are used to adjust the
treatment parameters to maximize the radiation dose delivered to the tumor. This
enables the practitioner to adjust the treatment plan to account for patient move-
ment, tumor growth or movement, and deformation of the surrounding organs. To
adjust the patient position and radiation beam angles and intensities based on the in-
formation provided by the CBCT images, the CBCT images must first be registered
with the planning CT images. Ideally, an adaptive radiotherapy treatment (ART)
will eventually be implemented in which the patient alignment and/or radiation beam
angles are continuously updated in the treatment room to maximize radiation dose
to the tumor and minimize radiation to healthy tissue. Such a treatment program
would require real-time multi-modality registration of images obtained during treat-
ment with planning images obtained prior to treatment. Thus, accurate registration
of images acquired from different machines at different times is an important step in
the adaptive treatment process.

In a conventional CT imaging system, a motorized table moves the patient
through a circular opening in the imaging device. As the patient passes through
the CT system, a source of x-rays rotates around the inside of the circular opening.
The x-ray source produces a narrow, fan-shaped beam of x-rays used to irradiate a
section of the body. As x-rays pass through the body, they are absorbed or attenu-
ated at different levels, and image slices are reconstructed based on the attenuation
process. Three-dimensional images are constructed using a series of two-dimensional
slices taken around a single axis of rotation.

In a CBCT imaging system, on the other hand, a cone-shaped beam is rotated
around the patient, acquiring images incrementally at various angles around the pa-



tient. The reconstructed data set is a three-dimensional image without slice artifacts,
which can then be sliced on any plane for two-dimensional visualization. CBCT im-
ages contain low frequency components that are not present in CT images (similar
to inhomogeneity related components in magnetic resonance images). One of the
challenges in CT-CBCT image registration is thus to account for artifacts and other
components that appear in one of the modalities but not in the other. See [8], [9]
for a discussion of registration of CT and CBCT images.

In [10], [11], and [12], we presented a series of multiscale registration algorithms
that were shown to be particularly effective for registration of noisy images. In this
paper, we extend our previous work to multiscale registration of CT-CBCT images.
The motivation for applying our multiscale registration algorithm to CT-CBCT reg-
istration is that artifacts that appear, for example, in CBCT images but not in CT
images can be treated in a similar way as noise. Moreover, different anatomical
structures in the images to be registered undergo different types of transformations,
and thus mapping of the different regions should be approached differently. Our mul-
tiscale registration algorithm first registers the coarse scales (such as main shapes,
bones, and essential features) of each image, and then uses finer details (such as
artifacts and noise) to iteratively refine the resulting transformation.

The structure of this paper is as follows. In Section 2, we briefly discuss ordinary
deformable and landmark-based registration algorithms, and present the details of
our multiscale registration algorithm. In Section 3, we present several examples to
illustrate the accuracy of the multiscale registration technique. Section 4 concludes.
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2 Methods

2.1 B-splines deformable registration

Splines-based deformable registration algorithms use a mesh of control points in the
images to be registered and a spline function to interpolate transformations away
from these points. The basis spline (B-spline) deformation model has the property
that the interpolation is locally controlled. Perturbing the position of one control
point affects the transformation only in a neighborhood of that point, making the
B-splines model particularly useful for describing local deformations. The control
points act as parameters of the B-splines deformation model, and the degree of non-
rigid deformation which can be modeled depends on the resolution of the mesh of
control points. See [13] and [14] for a detailed description of B-splines transformation
models. In this paper, we will use a B-splines deformable registration algorithm,
in conjunction with the multiscale decomposition and landmark-based registration,
with a uniform eight by eight grid of control points chosen automatically.



2.2 Landmark-based registration

Landmark-based registration is an image registration technique which is based on
physically matching a finite set of image features. See [4] and [15] for a detailed
description of landmark-based registration models. The problem is to determine the
transformation such that for a finite set of control points, any control point of the
moving image is mapped onto the corresponding control point of the fixed image.
More precisely, if A and B are two images to be registered, let F(A, j) and F (B, j),
j =1,...,m be given control points of the images. The solution ¢ of the registration
problem is then a map ¢ : R? — R? such that

F(A,j) = o(F(B.,j)), j = L,...m.

More generally, the solution ¢ : R? — R? of the registration problem can be defined
to be the transformation ¢ that minimizes the distance

DM () = Z IF(A, j) — ¢(F(B), j)|”

between the control points.

For the examples presented in this paper, we use an implementation of landmark-
based registration in which the transformation ¢ is restricted to translation, rotation,
scaling, and shear (i.e. ¢ is an affine transformation). The control points used in the
landmark-based registration are chosen manually, and we are currently working on
incorporating automatically detected control points in the algorithm.

2.3 Multiscale deformable registration
2.3.1 Hierarchical multiscale image decomposition

The multiscale registration techniques that we developed in [10], [11], [12] are based
on the hierarchical (BV, L?) multiscale image representation of [16]. This multiscale
decomposition will provide a hierarchical expansion of an image that separates the
essential features of the image (such as large shapes and edges) from the fine scales of
the image (such as details and noise). The decomposition is hierarchical in the sense
that it will produce a series of expansions of the image that resolve increasingly finer
scales, and hence include increasing levels of detail. The mathematical spaces L2,
the space of square-integrable functions, and BV, the space of functions of bounded
variation, will be used in the decomposition:
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Generally, images can be thought of as being elements of the space L?(R?), while
the main features of an image (such as edges) are in the subspace BV (R?). The



multiscale image decomposition of [16] interpolates between these spaces, providing
a decomposition in which the coarsest scales are elements of BV and the finest scales
are elements of L2. More precisely, the decomposition is given by the following.
Define the J-functional J(f, A) as follows:

TN = it (Mol + [lul v). M

where A > 0 is a scaling parameter that separates the L? and BV terms. Let [uy, v)]
denote the minimizer of J(f, A). The BV component, u,, captures the coarse features
of the image f, while the L? component, vy (referred to as the residual), captures
the finer features of f such as noise. The minimization of J(f, \) is interpreted as
a decomposition f = uy + vy, where u) extracts the edges of f and v, extracts the
textures of f. This interpretation depends on the scale A, since texture at scale A
consists of edges when viewed under a refined scale. Upon decomposing f = uy + vy,
we proceed to decompose vy as follows:

Uy = Ugx + V2,
where
[ugx, vox] = arginf J(vy, 2X).
U+v=v)

Thus we obtain a two-scale representation of f given by f = uy+usy. Repeating this
process results in the following hierarchical multiscale decomposition of f. Starting
with an initial scale A = )y, we obtain an initial decomposition of the image f:

f:u0+/l]07

[ug, vo] = arginf J(f, Ao).

utv=f

We then refine this decomposition to obtain

Uj = Ujt1 + Vjt1,

[uji1,v;11] = arginf J(vj, A2/ ™), 5=0,1,...
UF+v=1v;

After k steps of this process, we have:

k
f= Z uj + U, (2)
=0

which is a multiscale image decomposition f ~ ug—+u + ...+ ug, with a residual v.
As described in [16], the initial scale Ay should capture the smallest oscillatory scale
in f, though in practice A\ is typically determined experimentally. For the medical
images that we have worked with, we have found that A\g = 0.01 works well.
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Figure 1: Step 1 of the multiscale registration algorithm: decompose each of the
images to be registered into m hierarchical scales.
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Figure 2: Step 2 of the multiscale registration algorithm: register the coarse scales
using a landmark-based registration algorithm.

2.3.2 Multiscale registration algorithm

For the general setup, suppose that we want to register two images A and B with one
another. The iterated multiscale registration algorithm is implemented as follows.

1. Apply the multiscale (BV, L?) decomposition to both images. Let m denote the
number of hierarchical scales used in the decomposition. For the registration
problems considered here and in our previous work, we use m = 8 hierarchical
scales in the image decompositions. Let

denote the k-th scale of the image A. See Figure 1.

2. Register the coarse scales C(A) and C}(B) with one another using a landmark-
based registration algorithm. This step allows the practitioner to incorporate
known anatomical information about the images to be registered (such as cor-
respondence of bony structures) into the registration process. Let @andmark
denote the resulting transformation. See Figure 2.
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Figure 3: Step 3 of the multiscale registration algorithm: iteratively register the
scales with one another, at each stage using the previous scale transformation as the
starting point for the new registration procedure.

3. Use QPlandmark as the starting point to deformably register C(A) and C;(B)
with one another. This step allows the practitioner to refine the coarse-scale
landmark-based transformation obtained in the previous step, while at the
same time guaranteeing that the large-scale features (such as bony structures)
are still matched with one another. Let ¢, denote the resulting transformation.
Next, use ¢; as a starting point to deformably register the next scales Cy(A)
and Cy(B) with one another. Let ¢5 denote the transformation obtained upon
registering Co(A) with Cy(B). Iterate this method, at each stage using the
transformation computed by the previous scale registration algorithm as the
starting point for the current registration. Note that the landmark-based regis-
tration is only used for registering the coarsest scales of the images; the iterative
deformable registration component of the algorithm fine-tunes the registration
result obtained with the coarse-scale landmark-based registration. See Figure
3.

See Section 3.3 for a discussion of the computational costs of the multiscale algorithm.

3 Results and Discussion

In this section, we demonstrate the accuracy of the multiscale registration algorithm
with image registration experiments using both synthetic and clinical deformations.
All of the images used in this section were acquired at the Stanford University Medical
Center.



Figure 4: The original and noisy deformed CT images of the rectum.

3.1 Synthetic Results

To quantitatively evaluate the multiscale registration algorithm, we consider several
registration problems in which the transformation between the fixed and moving
images is known. We consider both rigid and non-rigid deformations.

3.1.1 Rigid Deformations

We begin with a CT image of the rectum, and deform the image using a known
transformation. To simulate a rigid transformation, we translate the original CT
image 13 mm in the horizontal (X) direction, 17 mm in the vertical (Y') direction,
and rotate the image 10 degrees about its center. Finally, to simulate the noise
components that appear in CBCT images, we add synthetic multiplicative (speckle)
noise to the deformed image. The original CT image and the noisy, deformed image
are illustrated in Figure 4.

We repeat this procedure for 50 different CT images of the rectum, and use
the multiscale registration algorithm to register the noisy deformed images with the
original CT images. The results (X-translation, Y-translation, and rotation angle)
of the multiscale registration algorithm are presented graphically in Figure 5; recall
that the known deformation parameters are 13 mm in X, 17 mm in Y, and 10
degrees rotation. The results presented in Figure 5 demonstrate that the multiscale
registration algorithm accurately recovers the actual deformation parameters.

3.1.2 Non-rigid Deformations

Next, we present a quantitative evaluation of the multiscale algorithm for non-rigid
deformations. We begin with a CT image of the rectum, and deform the image using a
known non-rigid transformation. To simulate a non-rigid transformation, we deform
(warp) the CT image using a known splines vector field deformation by assigning
random transformation parameters at each B-spline node of the image. Finally,
to simulate the noise components that appear in CBCT images, we add synthetic
multiplicative (speckle) noise to the deformed image. We add the same level of noise
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Figure 5: The X-translation, Y-translation, and rotation angle deformation parame-
ters obtained upon registering the noisy deformed rectum images with the CT images
using the multiscale registration algorithm.

as that illustrated in Figure 4. In Figure 6, we illustrate the vector deformation
field that graphically represents the known deformation between the images. The
deformation field represents graphically the magnitude of the deformation at each
pixel in the image. Each vector in the deformation field represents the geometric
distance between a pixel in the original CT image and the corresponding pixel in the
deformed image. Blue corresponds to 0 mm deformation, and red corresponds to 1
mm deformation.

We repeat this procedure for 50 different CT images of the rectum, and use
the multiscale registration algorithm to register the noisy deformed images with the
original CT images. To quantitatively evaluate the results, we compute the pixel-
wise sum of mean square differences (MSDs) between the vector deformation field
computed by the multiscale algorithm and the known exact vector deformation field
for each pair of images:

N
1
MSD(C, K) = 5 > (Ci = Ki)*,

=1

where N is the total number of pixels, C; is the magnitude of the i-th vector in the
deformation field computed by the multiscale registration algorithm, and K; is the
magnitude of the i-th vector in the known exact deformation field. If the computed
deformation field C' and the known deformation field E are exactly the same (i.e. if
the multiscale algorithm recovers the exact deformation between the images), then
MSD(C,K) = 0. Poor matches result in larger values of MSD(C, K). In Table
1, we present the mean, median, minimum, and maximum MSDs obtained upon
registering the 50 CT images with the noisy deformed images using the multiscale
algorithm. For reference, we also include in Table 1 the mean, median, minimum,



Figure 6: The deformation field illustrating the known vector deformation between
the original rectum CT image and the noisy deformed image.

Multiscale MSD: Ordinary MSD:
registration of CT images registration of CT images
with noisy deformed images | with non-noisy deformed images
Mean 7.5-107% 7.4-107%
Median 6.2-107* 6.5-107*
Minimum | 2.3-107% 2.3-1071
Maximum | 8.6 - 1074 8.4-10714

Table 1: The mean, median, minimum, and maximum MSDs between the computed
and known vector deformation fields.

and maximum MSDs obtained upon registering the 50 CT images with the non-noisy
deformed images using a standard B-splines deformable registration algorithm. Since
the B-splines technique has been validated to accurately recover deformations [3], [8],
[14], we can use the MSDs obtained with the B-splines algorithm for non-noisy regis-
tration as benchmark values for comparison with the multiscale algorithm for noisy
registration. We observe that the MSDs obtained upon registering the CT images
with the noisy deformed images using the multiscale registration algorithm are sim-
ilar to those obtained upon registering the CT images with the non-noisy deformed
images using a standard B-splines registration algorithm. Thus, we conclude that
the multiscale registration algorithm accurately registers the CT images with the
noisy deformed images.

3.2 Clinical Results

Next, we present the results obtained with the multiscale registration algorithm for
clinical CT-CBCT rectum, head-neck, and prostate registration. In each example, we
illustrate a slice of the CT image (upper left), the corresponding slice of the CBCT
image (upper right), a checkerboard comparison of the images after ordinary (i.e.
non-multiscale) B-splines deformable registration (lower left), and a checkerboard
comparison of the images after multiscale registration (lower right). We have high-
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Figure 7: Rectum example. Planning CT image (upper left), daily CBCT image (up-
per right), checkerboard comparison after ordinary B-splines deformable registration
(lower left), checkerboard comparison after multiscale registration (lower right). The
arrows indicate examples of areas of misalignment between the images after ordinary
registration.

lighted areas of misregistration in the checkerboard images after ordinary B-splines
registration with arrows. In particular, we notice that misalignment occurs in bony
structure regions after ordinary registration, and that we are able to recover this
misalignment using the multiscale registration algorithm. The accurate registration
of bony structures obtained with multiscale registration is due to the fact that we
approach mapping of bony structures differently than mapping of other regions (such
as tissue). We first register bony structures with one another using a coarse-scale
landmark-based registration, and then use an iterative splines-based registration to
refine the result.

To demonstrate the accuracy and applicability of our method, we have illustrated
example slices which contain different anatomical features. We performed a total of
50 rectum CT-CBCT registration examples, 50 head-neck CT-CBCT registration
examples, and 50 prostate CT-CBCT registration examples. Here, we present the
visual registration results for 1 rectum example, 1 head-neck example, and 1 prostate
example, and note that the results obtained with all other slices are similar to those
presented here.
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Figure 8: Head and neck example. Planning CT image (upper left), daily CBCT
image (upper right), checkerboard comparison after ordinary B-splines deformable
registration (lower left), checkerboard comparison after multiscale registration (lower
right). The arrows indicate examples of areas of misalignment between the images
after ordinary registration.
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Figure 9: Prostate example. Planning CT image (upper left), daily CBCT image
(upper right), checkerboard comparison after ordinary B-splines deformable registra-
tion (lower left), checkerboard comparison after multiscale registration (lower right).
The arrows indicate examples of areas of misalignment between the images after
ordinary registration.

3.2.1 Mutual information similarity measures

In Figure 10, we present the mutual information similarity measures between the
planning CT’s and daily CBCT’s before registration (circles), after ordinary B-splines
deformable registration (squares), and after multiscale registration (crosses) for all
50 slices considered for the rectum registration example. The mutual information
similarity measures for the head-neck and prostate examples are similar to those pre-
sented in Figure 10 for the head-neck example, so we do not include them here. In
Table 2, we present the mean mutual information measure (taken over all 50 slices)
before registration, after ordinary B-splines registration, and after multiscale regis-
tration. For all examples, and for all image slices, the similarity measures increased
after multiscale registration, and were slightly higher than the similarity measures
after B-splines registration. However, we note that the increased mutual information
similarity values do not completely represent the improved accuracy obtained with
multiscale registration that we have observed visually in Figures 4-7. Nevertheless,
they do capture the qualitative trend of a better matching using our multiscale reg-
istration algorithm. See [2], [17] for an overview of the use of mutual information in
multi-modality image registration.

3.3 Computation

For all of the examples presented in this paper, computations were performed on
a Dell Dimension 8400 Intel Pentium 4 CPU (3.40 GHz, 2.00 GB of RAM). The
total time required per slice for the multiscale registration algorithm (including de-
composition of the images to be registered) is approximately 30-50 seconds. For the
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Figure 10: The mutual information similarity measures between the rectum planning
CT’s and daily CBCT’s before registration, after B-splines deformable registration,
and after multiscale registration.

Mutual information Rectum | Prostate | Head-neck
Before registration 0.34 0.21 0.20
After B-splines registration | 0.75 0.64 0.74
After multiscale registration | 0.79 0.65 0.76

Table 2: The mean mutual information between the planning CT’s and daily CBC'T’s
before registration, after B-splines deformable registration, and after multiscale reg-
istration.
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types of medical images considered here, decomposition of the images (illustrated
schematically in Figure 1) into hierarchical scales requires approximately 5 seconds
per image. Landmark-based registration of the coarse scales (illustrated schemat-
ically in Figure 2) requires approximately 15-20 seconds per image, and iterative
deformable registration of all of the remaining scales (illustrated schematically in
Figure 3) requires approximately 15-20 seconds. In an ideal implementation of ART,
real-time registration of the CT and CBCT images will be performed in the treat-
ment room so that treatment can be continuously updated and optimized; thus, we
are currently working on improving the computational efficiency of the multiscale
registration algorithm.

The Insight Toolkit (ITK), an open-source software toolkit sponsored by the
National Library of Medicine and the National Institutes of Health, was used for
the iterative B-splines deformable registration portion of the multiscale registration
algorithm. Matlab was used for the multiscale decomposition and for the landmark-
based registration.

4 Conclusions

In this paper, we have presented the results of a multiscale registration algorithm
for registration of planning CT and daily CBCT medical images. The multiscale
algorithm is based on combining the hierarchical multiscale image decomposition of
[16] with standard landmark-based and free-form deformable registration techniques.
Our hybrid technique allows the practitioner to incorporate a priori knowledge of
corresponding bony or other anatomical structures into the registration process by
using a landmark registration algorithm to register the coarse scales of the fixed and
moving images with one another. The transformation produced by this coarse scale
landmark registration is then used as the starting point for a multiscale deformable
registration in which the remaining scales are iteratively registered with one another,
at each stage using the transformation computed by the previous scale registration
as the starting point for the current scale registration.

We have demonstrated with several synthetic and clinical image registration ex-
periments that the multiscale registration algorithm is applicable to CT-CBCT reg-
istration, which is an important component of ART and IGRT. One of the main
features of our multiscale registration algorithm is that it can be used in conjunction
with any standard registration technique(s). Thus, the multiscale algorithm can be
easily customized to various image registration problems.
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