Math 333
 Tuesday, February 26, 2008
 Reduction of Order

Recall the method that we used to construct a second solution of the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$. We knew one solution $y_{1}(t)$, and we guessed a solution of the form

$$
y(t)=v(t) y_{1}(t)
$$

and then used the differential equation to determine the function $v(t)$ so that $y(t)$ is a solution of the differential equation.

This technique is more generally applicable. Consider the general second-order linear homogeneous differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{1}
\end{equation*}
$$

Suppose that one solution, $y_{1}(t)$, is known. Assume that $y_{1}(t)$ is not identically zero. To find a second solution, let

$$
y=v(t) y_{1}(t)
$$

Then

$$
y^{\prime}=v^{\prime} y_{1}+v y_{1}^{\prime}
$$

and

$$
y^{\prime \prime}=v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime} .
$$

Substituting for y, y^{\prime}, and $y^{\prime \prime}$ in Eqn. (1) and collecting terms, we obtain:

$$
\begin{equation*}
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p(t) y_{1}\right) v^{\prime}+\left(y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}\right) v=0 . \tag{2}
\end{equation*}
$$

Since y_{1} is a solution of the differential equation in Eqn. (1), the coefficient of v in Eqn. (2) is zero. Thus, Eqn. (2) becomes:

$$
\begin{equation*}
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p(t) y_{1}\right) v^{\prime}=0 . \tag{3}
\end{equation*}
$$

This is a first-order separable linear differential equation for the function v^{\prime}. Thus, we can find v^{\prime} by separating variables and integrating both sides. Then, we can find v by integrating. Finally, we obtain a solution $y(t)$ of the original differential equation:

$$
y(t)=v(t) y_{1}(t)
$$

This technique is called the reduction of order method because we reduce the original second order differential equation for y to a first-order differential equation for v^{\prime}.

Example. Consider the differential equation

$$
2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, \quad t>0
$$

Show that

$$
y_{1}(t)=t^{-1}
$$

is a solution of the differential equation. Then use the method of reduction or order to find the general solution of the differential equation.

Solution. Set $y(t)=v(t) t^{-1}$. Then

$$
y^{\prime}=v^{\prime} t^{-1}-v t^{-2}, \quad y^{\prime \prime}=v^{\prime \prime} t^{-1}-2 v^{\prime} t^{-2}+2 v t^{-3}
$$

Substituting in the differential equation and collecting terms, we obtain

$$
2 t v^{\prime \prime}-v^{\prime}=0
$$

We can rewrite this as

$$
2 t \frac{d v^{\prime}}{d t}=v^{\prime}
$$

or

$$
\frac{1}{v^{\prime}} d v^{\prime}=\frac{1}{2 t} d t
$$

Integrating both sides, we obtain

$$
v^{\prime}(t)=c_{1} t^{1 / 2}
$$

Thus

$$
v(t)=\frac{2}{3} c_{1} t^{1 / 2}+c_{2} .
$$

Finally,

$$
y(t)=k_{1} t^{1 / 2}+k_{2} t^{-1}
$$

Thus we have written the solution $y(t)$ as a linear combination of two solutions $y_{1}(t)=t^{-1}$ and $y_{2}(t)=t^{1 / 2}$. To verify that $y(t)$ is indeed the general solution, we show that y_{1} and y_{2} form a fundamental set of solutions. To show that y_{1} and y_{2} form a fundamental set of solutions, we show that $W\left(y_{1}, y_{2}\right) \neq 0$.

