Putnam Problem-Solving Seminar Week 3
 Modular Arithmetic (continued)

1. Show that if n is an integer greater than 1 , then n does not divide $2^{n}-1$.
2. Let $T_{n}=2^{n}+1$ for all positive integers. Let φ be the Euler φ-function, and let k be any positive integer. Let $m=n+k \varphi\left(T_{n}\right)$. Show that T_{m} is divisible by T_{n}.
3. If a, b, c, d are positive integers, show that 30 divides $a^{4 b+d}-a^{4 c+d}$.
4. Find the smallest integer n such that $2^{n}-1$ is divisible by 47 .

5 . Let n be a positive integer such that $n+1$ is divisible by 24 . Prove that the sum of the divisors of n is divisible by 24 .
6. Let $f(n)$ be the sum of the first n terms of the sequence $0,1,1,2,2,3,3, \ldots$, where the n-th term is given by $a_{n}=n / 2$ if n is even and $a_{n}=(n-1) / 2$ if n is odd. Show that if x and y are positive integers, then $x y=f(x+y)-f(x-y)$.
7. Find all solutions of $x^{n+1}-(x+1)^{n}=2001$ in positive integers x and n.
8. Prove that 7,19 , and 1295 can not be written as the sum of two squares.
9. A triangular number is an integer of the form $n(n+1) / 2$. Show that m is a sum of two triangular numbers if and only if $4 m+1$ is a sum of two squares.

