Power Series as Functions, Part 1

Geometric series. For any z such that $|z|<1$,

$$
\sum_{k=0}^{\infty} z^{k}=1+z+z^{2}+z^{3}+\cdots
$$

is a convergent geometric series with

$$
a=1 \text { and } r=z .
$$

Thus, for $|z|<1$,

$$
\begin{equation*}
\frac{1}{1-z}=1+z+z^{2}+z^{3}+\cdots=\sum_{k=0}^{\infty} z^{k} . \tag{1}
\end{equation*}
$$

This is called a power series representation for the function $f(z)=\frac{1}{1-z}$. We can use this basic result to find power series representations for other functions.

Examples.

1. Find a power series representation for the function $f(x)=\frac{1}{1-x}$. Find the interval of convergence of the power series.
2. Find a power series representation for the function $f(x)=\frac{1}{1+x}$. Find the interval of convergence of the power series.
3. Find a power series representation for the function $f(x)=\frac{1}{1+x^{4}}$. Find the interval of convergence of the power series.
4. Find a power series representation for the function $f(x)=\frac{1}{x+3}$. Find the interval of convergence of the power series.
5. Find a power series representation for the function $f(x)=\frac{x^{3}}{x+3}$. Find the interval of convergence of the power series.
6. Find a power series representation for the function $f(x)=\frac{1}{1+4 x^{2}}$. Find the interval of convergence of the power series.

Practice Problems.

1. Find a power series representation for the function $f(x)=\frac{1}{1-x^{3}}$. Find the interval of convergence of the power series.
2. Find a power series representation for the function $f(x)=\frac{1}{x-5}$. Find the interval of convergence of the power series.
3. Find a power series representation for the function $f(x)=\frac{x}{9+x^{2}}$. Find the interval of convergence of the power series.

Answers.

1. $\sum_{k=0}^{\infty} x^{3 k}=1+x^{3}+x^{6}+\cdots, \quad(-1,1)$
2. $-\sum_{k=0}^{\infty} \frac{1}{5^{k+1}} x^{k}=-\frac{1}{5}-\frac{x}{25}-\frac{x^{2}}{5^{3}}-\cdots, \quad(-5,5)$
3. $\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{9^{k+1}} x^{2 k+1}=\frac{x}{9}-\frac{x^{3}}{9^{2}}+\frac{x^{5}}{9^{3}}-\frac{x^{7}}{9^{4}}+\cdots, \quad(-3,3)$
