Introduction to Power Series

A **power series** is a series of the form

$$\sum_{k=0}^{\infty} a_k (x-x_0)^k = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + a_3 (x-x_0)^3 + \cdots,$$

where x is a variable, the constants a_k (which might depend on k) are called the **coefficients**, and the constant x_0 is called the **base point** or **center** of the power series. A power series may **converge** for some values of x and diverge for other values of x.

Examples.

1. Find all values of x for which the power series $\sum_{k=1}^{\infty} x^k$ converges.

2. Find all values of x for which the power series $\sum_{k=1}^{\infty} \frac{x^k}{k}$ converges.

3. Find all values of x for which the power series $\sum_{k=1}^{\infty} (-1)^k \frac{x^k}{k^2 3^k}$ converges.

4. Find all values of x for which the power series $\sum_{k=0}^{\infty} (x-5)^k$ converges.

5. Find all values of x for which the power series $\sum_{k=0}^{\infty} 2^k x^k$ converges.

6. Find all values of x for which the power series $\sum_{k=1}^{\infty} \frac{(x-3)^k}{k}$ converges.

7. Find all values of x for which the power series $\sum_{k=0}^{\infty} k! x^k$ converges.

Theorem: Convergence of Power Series. For a given power series

$$\sum_{k=0}^{\infty} c_k (x - x_0)^k,$$

there are only three possibilities:

Math 112: Calc B

- 1. The series converges only when $x = x_0$.
- 2. The series converges for all x.
- 3. There is a positive number R such that the series converges if $|x x_0| < R$ and diverges if $|x x_0| > R$.

The number R in case 3 is called the **radius of convergence** of the power series. The radius of convergence is R = 0 in case 1 and $R = \infty$ in case 2. The **interval** of **convergence** of a power series is the interval that consists of all values of x for which the series converges. In case 1, the interval consists of just the single point x_0 . In case 2, the interval is $(-\infty, \infty)$. In case 3, there are four possibilities for the interval of convergence:

$$(x_0 - R, x_0 + R), (x_0 - R, x + 0 + R], [x_0 - R, x_0 + R), [x_0 - R, x_0 + R].$$

Examples.

1. If $\sum_{k=0}^{\infty} c_k 4^k$ converges, does it follow that the following series converge?

(a)
$$\sum_{k=0}^{\infty} c_k (-2)^k$$

(b)
$$\sum_{k=0}^{\infty} c_k (-4)^k$$

2. Suppose that $\sum_{k=0}^{\infty} c_k x^k$ converges when x = -4 and diverges when x = 6. What can be said about the convergence or divergence of the following series?

(a)
$$\sum_{k=0}^{\infty} c_k$$

(b)
$$\sum_{k=0}^{\infty} c_k 8^k$$

(c)
$$\sum_{k=0}^{\infty} c_k (-3)^k$$
$$\sum_{k=0}^{\infty} c_k (-1)^k 9^k$$

Math 112: Calc B