Introduction to Power Series

A power series is a series of the form

$$
\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+a_{3}\left(x-x_{0}\right)^{3}+\cdots
$$

where x is a variable, the constants a_{k} (which might depend on k) are called the coefficients, and the constant x_{0} is called the base point or center of the power series. A power series may converge for some values of x and diverge for other values of x.

Examples.

1. Find all values of x for which the power series $\sum_{k=0}^{\infty} x^{k}$ converges.
2. Find all values of x for which the power series $\sum_{k=1}^{\infty} \frac{x^{k}}{k}$ converges.
3. Find all values of x for which the power series $\sum_{k=1}^{\infty}(-1)^{k} \frac{x^{k}}{k^{2} 3^{k}}$ converges.
4. Find all values of x for which the power series $\sum_{k=0}^{\infty}(x-5)^{k}$ converges.
5. Find all values of x for which the power series $\sum_{k=0}^{\infty} 2^{k} x^{k}$ converges.
6. Find all values of x for which the power series $\sum_{k=1}^{\infty} \frac{(x-3)^{k}}{k}$ converges.
7. Find all values of x for which the power series $\sum_{k=0}^{\infty} k!x^{k}$ converges.

Theorem: Convergence of Power Series. For a given power series

$$
\sum_{k=0}^{\infty} c_{k}\left(x-x_{0}\right)^{k}
$$

there are only three possibilities:

1. The series converges only when $x=x_{0}$.
2. The series converges for all x.
3. There is a positive number R such that the series converges if $\left|x-x_{0}\right|<R$ and diverges if $\left|x-x_{0}\right|>R$.

The number R in case 3 is called the radius of convergence of the power series. The radius of convergence is $R=0$ in case 1 and $R=\infty$ in case 2 . The interval of convergence of a power series is the interval that consists of all values of x for which the series converges. In case 1 , the interval consists of just the single point x_{0}. In case 2 , the interval is $(-\infty, \infty)$. In case 3 , there are four possibilities for the interval of convergence:

$$
\left(x_{0}-R, x_{0}+R\right), \quad\left(x_{0}-R, x+0+R\right], \quad\left[x_{0}-R, x_{0}+R\right), \quad\left[x_{0}-R, x_{0}+R\right]
$$

Examples.

1. If $\sum_{k=0}^{\infty} c_{k} 4^{k}$ converges, does it follow that the following series converge?
(a) $\sum_{k=0}^{\infty} c_{k}(-2)^{k}$
(b) $\sum_{k=0}^{\infty} c_{k}(-4)^{k}$
2. Suppose that $\sum_{k=0}^{\infty} c_{k} x^{k}$ converges when $x=-4$ and diverges when $x=6$. What can be said about the convergence or divergence of the following series?
(a) $\sum_{k=0}^{\infty} c_{k}$
(b) $\sum_{k=0}^{\infty} c_{k} 8^{k}$
(c) $\sum_{k=0}^{\infty} c_{k}(-3)^{k}$
$\sum_{k=0}^{\infty} c_{k}(-1)^{k} 9^{k}$
