Math 112
 Why Does Integration by Parts Work?

Why does the integration by parts formula work? Suppose that u and v are both functions of x. Then, using the product rule,

$$
(u v)^{\prime}=u v^{\prime}+u^{\prime} v
$$

Equivalently, we can say that the product $u v$ is an anti-derivative of $u v^{\prime}+u^{\prime} v$. Thus

$$
\begin{aligned}
u(x) v(x) & =\int\left(u(x) v^{\prime}(x)+u^{\prime}(x) v(x)\right) d x \\
& =\int u(x) v^{\prime}(x) d x+\int v(x) u^{\prime}(x) d x \\
& =\int u(x) \frac{d v}{d x} d x+\int v(x) \frac{d u}{d x} d x \\
& =\int u(x) d v+\int v(x) d u
\end{aligned}
$$

Thus we have:

$$
u v=\int d v+\int v d u
$$

Rearranging terms, we obtain the integration by parts formula:

$$
\int u d v=u v-\int v d u
$$

