Math 333
 Some Practice with Partial Derivatives

Suppose that $f(t, y)$ is a function of both t and y. The partial derivative of f with respect to y, written

$$
\frac{\partial f}{\partial y}
$$

is the derivative of f with respect to y with t held constant. To find $\frac{\partial f}{\partial y}$, you should consider t as a constant and then find the derivative of f with respect to y.
Example. Suppose $f(t, y)=t^{2} \sin \left(y^{3}\right)$. Then

$$
\frac{\partial f}{\partial y}=t^{2} \cos \left(y^{3}\right) \cdot 3 y^{2}
$$

Some Practice Problems.

1. Suppose $f(t, y)=t^{3} y^{2}$. Find $\frac{\partial f}{\partial y}$.
2. Suppose $f(t, y)=e^{t+y}$. Find $\frac{\partial f}{\partial y}$.
3. Suppose $f(t, y)=\ln \left(t^{2} y\right)$. Find $\frac{\partial f}{\partial y}$.
4. Suppose $f(t, y)=\cos (t y)$. Find $\frac{\partial f}{\partial y}$.
5. Suppose $f(t, y)=\frac{t y}{\sin \left(t^{3}+y^{2}\right)}$. Find $\frac{\partial f}{\partial y}$.

Answers to the Practice Problems.

1. $\frac{\partial f}{\partial y}=2 t^{3} y$
2. $\frac{\partial f}{\partial y}=e^{t+y}$
3. $\frac{\partial f}{\partial y}=\frac{1}{t^{2} y} \cdot t^{2}$
4. $\frac{\partial f}{\partial y}=-\sin (t y) \cdot(t)$
5. $\frac{\partial f}{\partial y}=\frac{t-\cos \left(t^{3}+y^{2}\right) 2 y}{\sin ^{2}\left(t^{3}+y^{2}\right)}$
