Math 333 Some Practice with Partial Derivatives

Suppose that f(t, y) is a function of both t and y. The partial derivative of f with respect to y, written

 $\frac{\partial f}{\partial y},$

is the derivative of f with respect to y with t held constant. To find $\frac{\partial f}{\partial y}$, you should consider t as a constant and then find the derivative of f with respect to y. **Example.** Suppose $f(t, y) = t^2 \sin(y^3)$. Then

$$\frac{\partial f}{\partial y} = t^2 \cos(y^3) \cdot 3y^2.$$

Some Practice Problems.

- 1. Suppose $f(t, y) = t^3 y^2$. Find $\frac{\partial f}{\partial y}$.
- 2. Suppose $f(t, y) = e^{t+y}$. Find $\frac{\partial f}{\partial y}$.
- 3. Suppose $f(t, y) = \ln(t^2 y)$. Find $\frac{\partial f}{\partial y}$.
- 4. Suppose $f(t, y) = \cos(ty)$. Find $\frac{\partial f}{\partial y}$.
- 5. Suppose $f(t, y) = \frac{ty}{\sin(t^3 + y^2)}$. Find $\frac{\partial f}{\partial y}$.

Answers to the Practice Problems.

1.
$$\frac{\partial f}{\partial y} = 2t^3y$$

2. $\frac{\partial f}{\partial y} = e^{t+y}$
3. $\frac{\partial f}{\partial y} = \frac{1}{t^2y} \cdot t^2$
4. $\frac{\partial f}{\partial y} = -\sin(ty) \cdot (t)$
5. $\frac{\partial f}{\partial y} = \frac{t-\cos(t^3+y^2)2y}{\sin^2(t^3+y^2)}$