Math 112
 Partial Fractions

When integrating a rational function whose numerator has a smaller degree than the denominator, we write the given rational function as a sum of its partial fractions.

- If the degree in the numerator is the same as the degree in the numerator or higher, we take the preliminary step of performing a long (Euclidean) division.
- If the denominator has more than two linear factors, we include a term corresponding to each factor. Note: this will be the only type of partial fractions problem on the Gateway Exam.

As an example,

$$
\frac{x}{(x+2)(x+1)}=\frac{A}{x+2}+\frac{B}{x+1}
$$

- If a linear factor is repeated, we include extra terms in the partial fraction expression.

As an example,

$$
\frac{x}{(x+2)^{2}(x-1)}=\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{x-1} .
$$

- If the denominator is an irreducible quadratic then the corresponding partial fraction is of the form $\frac{A x+B}{a x^{2}+b x+c}$. As an example,

$$
\frac{1}{\left(x^{2}+1\right)(x+2)}=\frac{A x+B}{x^{2}+1}+\frac{C}{x+2} .
$$

Examples.

1. $\int \frac{5 x-3}{(x-3)(x+1)} d x$
2. $\int \frac{2 x+1}{(x-2)(x+5)} d x$
3. $\int \frac{2}{x^{2}+3 x-4} d x$
4. $\int \frac{6 x+7}{(x+2)^{2}}$
5. $\int \frac{x-1}{x^{3}+x^{2}} d x$
6. (Challenge) $\int \frac{10}{(x-1)\left(x^{2}+9\right)} d x$
