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LARGE-AMPLITUDE PERIODIC OSCILLATIONS IN SUSPENSION 

BRIDGES: SOME NEW CONNECTIONS WITH NONLINEAR 


ANALYSIS* 


Abstract. This paper surveys an  area of nonlinear functional analysis and its applications. The 
main application is to the existence and multiplicity of periodic solutions of a possible mathematical 
models of nonlinearly supported bending beams, and their possible application to nonlinear behavior 
as observed in large-amplitude flexings in suspension bridges. A second area, periodic flexings in a 
floating beam, also nonlinearly supported, is covered a t  the end of the paper. 

Key words. nonlinear periodic oscillation, bending beams, multiple solutions 

AMS(M0S) subject classifications. 35B10; secondary 70K30, 73K05 

1. Periodic oscillation in suspension bridges: Facts old and new. If the 
science of mechanics has a classic movie, it must be the old film of the collapse of 
the Tacoma Narrows suspension bridge. Most readers have surely seen the dramatic 
large-scale oscillations, followed by the collapse of the structure. Recent research un- 
covered a compelling explanation of this phenomenon, which challenged the commonly 
accepted one. 

There is a standard explanation of the large oscillations of the bridge. The claim 
is that the bridge behaves like a particle of mass one at the end of a spring with spring 
constant k, which is subject to a forcing term of frequency p/27r. This is a sophomore 
level problem, and we can all answer it. If p is very close to the square root of k, then 
large oscillation results. If p is not, then it does not. 

The usual explanation [lo] then says that the forcing term came from a train of 
alternating vortices being shed by the bridge as the wind blew past it. The frequency 
just happened to be at a value very close to a resonant frequency of the bridge. Thus, 
even though the magnitude of the forcing term was small, the phenomenon of linear 
resonance was enough to explain the large oscillation and eventual collapse of the 
bridge. 

This explanation has enormous appeal in the mathematical and scientific com- 
munity. It is plausible, remarkably easy to understand, and makes a nice example in 
a differential equations class. It also explains something otherwise difficult to under- 
stand. An early convert was the New York Times.' 

Nonetheless, it leaves some nagging doubts. Usually, the phenomenon of linear 
resonance is very precise. (For example, audio tape companies advertise the accuracy 
of their product by showing how it reproduces the frequency with enough precision 
to recreate resonance.) Could it really be that such precise conditions existed in the 
middle of the Tacoma Narrows, in an extremely powerful storm? 

* Received by the editors October 5, 1989; accepted for publication (in revised form) March 5, 
1990. This research was supported in part by grant DMS-8722593 and grant DMS-8722532 from the 
National Science Foundation. 

t 	University of Miami, Coral Gables, Florida 33124. 
University of Connecticut, Storrs, Connecticut 06268. 
Two days after the first reports, the editorial page contained the following analysis: "Like all 

suspension bridges, that a t  Tacoma both heaved and swayed with a high wind. It takes only a tap  
to start a pendulum swinging. Time successive taps correctly and soon the pendulum swings with 
its maximum amplitude. So with the bridge. What physicists call resonance was established . . . ." 
(The authors wonder what was meant by the maximum amplitude of the pendulum.) 
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We found more details in [44], where the classic explanation is attributed to von 
KArmAn. "A national commission investigating the collapse included Theodore von 
KArmAn of Caltech. He explained that vortices were pouring off the top and bottom 
of the bridge, driving the bridge at its resonant frequency, which eventually led to its 
collapse." Von KArmAn did indeed say as much in his popular autobiography2 [25]. 
"As I had suspected: the villain was the KkmAn vortices." 

The commission in question included von KArmAn, and Othmar H. Amann, the ar- 
chitect who designed the George Washington Bridge, among many others, and Glenn 
B. Woodruff. They studied all the data, and reported on their conclusions to the 
administrator of the Federal Works Agency, John M. Carmody. Still suspicious of 
simple resonance, we studied their report [5]. 

The report was full of all sorts of data that had been painstakingly collected over 
the months of the bridge's existence prior to its collapse. Amplitudes, frequencies, 
and modes of oscillation, along with weather conditions, wind velocities and directions 
had all been recorded. The conclusions included the following remarkable paragraph: 

It is very improbable that resonance with alternating vortices 
plays an important role in the oscillations of suspension bridges. 
First, it was found that there is no sharp corellation between wind ve- 
locity and oscillation frequency, as is required in the case of resonance 
with vortices whose frequency depends on the wind velocity. . . . It 
seems that it is more correct to say that the vortex formation and 
frequency is determined by the oscillation of the structure than that 
the oscillatory motion is induced by the vortex formation. 

In [52], one suspension bridge engineer comments: 
Unfortunately for the record, some of the writings of von KArmAn 

leave a trail of confusion on this point. Perhaps the most glaring 
inaccuracy is his apparent insistence in his popular biography that 
"the culprit was the KArmAn vortex street." . . . However, since a body 
with changing angle of attack does indeed shed mot ion  induced wake 
vortices, there was indeed a "non-KBrmAn" trail of vortices. 

Later in the same paper, the author remarks on the difficulty of analyzing the 
oscillation of suspension bridges such as the Golden Gate Bridge, which exhibit self- 
excitation under gusting. In particular, he suggests that "The analytics [sic] of the 
buffeting problem are accompanied by a number of problems, notably the possible 
inadequacy of the linear superposition ideas mos t  commonly used. (emphasis added)" 

There seems to be a need to give a clear mathematical argument as to why 
suspension bridges oscillate. As made clear in [5], [7], suspension bridges have a history 
of large-scale oscillation and catastrophic failure under high and even moderate winds, 
as well as (less common) under other mechanical forces. 

Earlier bridges such as the Bronx-Whitestone bridge, on which a traveller might 
often get seasick due to the large-scale motions, or the Golden Gate Bridge, which has 
exhibited travelling waves [5], had exhibited oscillatory behavior due to the action of 
wind. 

What distinguished the Tacoma Narrows was the extreme flexibility of its roadbed, 

This is a highly entertaining account of one man's progress through the scientific-industrial 
complex. It also includes photos of von KBrmBn with popes, presidents, and Jayne Mansfield. 
Characteristically, von KBrmBn is looking, not at  Jayne, but at  the camera. The book also includes 
his opinions on men of science in the twentieth century. "Einstein was the greatest . . .he  had four 
great ideas. Most other great names had one, or at  most, two. I had . . .three and a half. (p. 4)" 
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FIG.1. T h e  Tacoma Narrows Bridge. ( a )  T h e  original bridge which was light, flexible, two lane, 
and cost $6 million. Photo 01940  Seattle Times. (b) T h e  replacement bridge, which i s  heavy, rigid, 
four-lane, and cost $15 million. Photo 01974  Seattle Times. 
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being an order of magnitude higher than that of earlier bridges mentioned [5]. This 
resulted in a pronounced tendency to oscillate vertically, under widely differing wind 
conditions. The bridge might be quiet in winds of forty miles per hour, and might 
oscillate with large amplitude in winds as low as three or four miles per hour. These 
vertical oscillations were standing waves of different nodal types. The report [5] con- 
tains rich detail on this type of wave. Curiously, the engineering literature refers to 
this type of oscillation as "benign" [52]. 

The second type of oscillation was observed just prior to the collapse of the bridge. 
This was a pronounced torsional mode. This type of oscillation was observed after 
the bridge went into large vertical motion which apparently induced a slippage of 
a crucial part of the bridge called the cable band, which attached the center of the 
cable to the roadbed. Under the influence of the large amplitude vertical motions (of 
about five feet in amplitude with a frequency of 38 per minute), this band slipped, 
and "the change from the moderate parallel motions of the cables to the more violent 
out-of-phase motions was sudden" [5, p. 581. 

It should be emphasized that in the observed torsional motion, some of the cables 
were alternately loosening and tightening. This is the nonlinear effect that we are 
interested in studying. 

A wind-tunnel study of a scale model of the Tacoma Narrows Bridge was studied 
in a variety of wind conditions by Dunn [5, Appendix VIII]. Although he was able to 
induce vertical motions at about the right wind velocity, he was only able to induce 
torsional motion in the model by making it fifty per cent more flexible, and increasing 
the velocity to approximately twice that of the actual storm, on the day of the failure. 

There is a curious fact which we should bear in mind when attempting to model 
large amplitude oscillation in suspension bridges, namely that for small to medium 
amplitude oscillations, the behavior is almost perfectly linear [53]. 

Thus, there is a need for a mathematical explanation of 
1. What in the nature of suspension bridges makes them so prone to large-scale 

oscillation; 
2. 	The fact that the bridge would go into large oscillation under the impulse of 

a single gust, and at other times would remain motionless in winds of thirty 
to forty m.p.h.; 

3. The fact that the motion would change rapidly from one nodal type to  an- 
other; 

4. 	The fact that large vertical oscillation could rapidly change to torsional; 
5. 	The existence of the travelling waves; 
6. The fact that the motion is linear over small to medium range oscillation. 

Providing such explanations is the goal of this paper. 
What distinguishes suspension bridges, we claim, is their fundamental nonlinear- 

ity. The restoring force due to a cable is such that it strongly resists expansion, but 
does not resist compression. Thus, the simplest function to model the restoring force 
of the stays in the bridge would be a constant times u, the expansion, if u is positive, 
but zero, if u is negative, corresponding to compression. 

The stays would be in a state of tension under the weight of the bridge, rather 
than at u equal zero. 

One area of nonlinear analysis has recently made considerable progress on prob- 
lems with this type of nonlinearity. This type of nonlinearity, often called asymmetric 
(because it behaves differently for u positive and u negative), has given rise to the 
following quasi principle: 
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Systems with asymmetry and large uni-directional loading tend 
to have multiple oscillatory solutions: the greater the asymmetry, the 
larger the number of oscillatory solutions, the greater the loading, the 
larger the amplitude of the oscillations. 

In $2 of this survey, we shall review some standard literature in the field of semi- 
linear partial differential equations and then describe some of these theorems in their 
original context. In $3, we shall describe some results of this type for simple mechan- 
ical systems. 

In 54, we shall return to the bridge, describe a new differential equation which 
models a bridge, show how this theory applies in accordance with our stated goals, and 
show how this area gives key new insights into the oscillation of suspension bridges, 
even suggesting new ways of constructing extremely light flexible bridges which would 
not be prone to  large-scale oscillation. 

In $5, we show how similar results apply in the area of naval architecture. 
Any proofs that are given in the course of this paper should be accessible to 

the average graduate student with some background in differential equations and 
functional analysis. 

Throughout the paper are scattered what to the best of our knowledge are open 
problems. We will be happy to respond to queries on the state of knowledge of these 
problems in the future. 

2. A review of the literature of nonlinear elliptic boundary value prob- 
lems: Classical and recent. In this section, we shall review two bodies of work: 
the older literature on the existence of solutions to semilinear elliptic boundary value 
problems, and the work referred to in the introduction on systems in which an asym- 
metric nonlinearity can give rise to multiple solutions. The older body of work, which 
we shall study first falls under the category of what we call the nearly linear case. 

2.1. Nearly linear theory. We begin with a review of literature up to the end 
of the 1970s on the existence of solutions for the equation 

Au + f (u) = h(x) in R, 

u = O  ondR.  

As always throughout this article, the region R is a smooth, simply connected, 
bounded region in Rn, and the function f is assumed to be asymptotically homo- 
geneous with limits at plus infinity and minus infinity, that is, fl(+co) exists and is 
equal to b and fl(-co) exists and is equal to a .  

The Laplacian, with Dirichlet boundary conditions has eigenvalues, Xi ,  0 < X1 < 
< X3 < . . ., and their corresponding eigenfunctions will be denoted by $i. (Recall 

that the first eigenvalue is simple and that the first eigenfunction, $1, is strictly 
positive in R.) 

A good guide for this sort of problem is the piecewise linear equation, 

Recall that the nonlinear function uf denotes the function which is u, if u is positive, 
and zero if u is negative and u- = (-u)+. The real number s is a parameter which 
we will vary. 

Note that if a ,  b < X I ,  we can write down the solution to (2) explicitly. If s > 0 
then the solution is s $ ~ / ( a  - X I ) ,  and if s < 0, the solution is s$l/(b- X I ) .  Thus, the 
semilinear equation admits a solution for all values of s.  
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This is true for all right-hand sides, not just s&. Following earlier work of Picard 
(en route to his celebrated method of successive approximations), Hammerstein [22] 
proved the following theorem. 

THEOREM If sup 1 a f / a u  15 m < A,, then (1) admits a unique solution 2.1. 
for any choice of h(x). Moreover, if f l (+m),fl(-co) < XI, there always exists a 
solution, which may not be unique. 

In the interests of exposition, we have omitted some of the technical smoothness 
assumptions required by Hammerstein. 

We could now look at the situation in (2), where a and b are no longer below A1.  

We know that if we take a = b = X i ,  then the Fredholm alternative applies, and there 
will be no solution if s # 0. In addition, we know that if Xi < a , b < X i + l ,  then we 
can again explicitly write down the solution, namely ~ q 5 ~ / ( b- X I )  if s is positive, and 
sq51/(a - X I )  if s is negative. 

This, it turns out, is a good guide for the nonlinearity f (u), as was proved, almost 
twenty years after Hammerstein, by Dolph [19]. 

THEOREM > 0 such that for all s, A, + E < f l ( s )  < X n + l ,2.2. If there exists E 

then (1) has a unique solution, for any choice of right-hand side. If we only know 
that A, < fl(+co), fl(-co) < then there exists a solution which may not be 
unique. 

Again, some technical hypotheses are omitted. We include a sketch of the proof, 
since it is an elegant application of the contraction fixed point theorem. 

Proof. Write (1) as L(u) = N(u) ,  where L = -A - yI ,  y = (A, + X,+1)/2, and 

N(u)  = f (u) - - h(x). 
Observe that in L2(R), there exists an E > 0 such that 

and that, since L is self-adjoint, with eigenvalues p; = Xi - y, satisfying 

therefore, it follows that 

Thus, we conclude that the map u + L-lN(u) is a contraction on L2(R), and this 
proves the uniqueness part of the theorem. The second part of the theorem is proved 
by the Schauder fixed point theorem, using the same basic idea, namely, by showing 
that the same map maps a large ball into itself. 

In the case in which the nonlinearity does not cross the spectrum of the Laplacian 
(in the sense that closure( rangef') n {Xi} = 0, the semilinear equation (1) behaved 
like the piecewise linear one, (2). 

The next natural object of study was the case where the interval (f l ( -m),  fl(+co)) 
contained some of the spectrum of the Laplacian. Again, let us look to the piecewise 
linear case. 

We observe that if a < X1 < b, then if s > 0, there exist two "linear" solutions. 
These are s&/(b- X I )  and s41/(a- X I ) .  The first of these is positive, and the second 
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is negative, so we can verify that they are solutions by substituting them directly into 
the equation. 

Almost as obvious is that if s < 0, there can be no solution. This can be seen by 
rewriting (2) as 

Now multiply across by and integrate by parts. This gives 

0 = .I((b- Xl)uf - (a - Xl)u-)41dx - s, 

since ((A + Xl)u, 41) = (u, (A + X1)41) = 0, which is clearly impossible if s < 0, since 
all terms in the integral are positive. This also shows that if s = 0, u = 0 is the only 
solution. 

The next question is, are these the only solutions to the piecewise linear problem, 
or could there be others? 

LEMMA2.3. Suppose a < X1 < b < X 2 .  Then if  s > 0, there are exactly two 
solutions to (2). 

Proof (sketch). Let P be the orthogonal projection onto the subspace of H = 

L2(R) spanned by $1. Then, I - P is projection onto the orthogonal complement. 
Then, (2) is equivalent to 

To verify this claim, take the P and (I- P) projections of (2) and observe that 
P ( A  + Xl)u = 0. Now we write u = v + w, where v = P u ,  and w = (I- P ) u .  Then 
we obtain, from (4), 

Now, regard this as an equation, for fixed v, on (I-P ) H .  Let y = (a+ b)/2, and 
observe, by the hypothesis of the lemma, that y < X2.  Again, we can rewrite (4) as 

It is easy to check that if L is (-A -y), restricted to (I-P)H, then the norm of L-l 
is (A2 - y)-l. Also, note that if the right-hand side of the above equation is regarded 
as a nonlinear map from (I-P)H to itself, then it has a Lipschitz constant ( b  -a)/2. 
Since the product (A2 - y)-l ( b  - a)/2 is less than one, this shows that the equivalent 
map 

is a contraction and this has a unique fixed point. 
Finally, since either v < 0, or v > 0 in 0, by explicit calculation we can check 

that w = 0 is the unique solution. (This is because v+ = v and (I-P)v  = 0 if v > 0.) 
This concludes the proof of the lemma. 

Thus, we can see that if a < X1 < b < X2,  the only solutions are the potential 
linear solutions. If s < 0, there is no solution, if s = 0, there is the (unique) zero 
solution, and if s > 0, there are exactly two solutions, one negative and one positive. 



544 OSCILLATIONS IN BRIDGES 

Almost twenty years after Dolph, it was shown that the piecewise linear model 
and the approximately linear solutions were a good model for the semilinear case. 
Part of what was proved was in [3] includes the following theorem. 

THEOREM < X1 < f l ( + m )  < X2 and fl'(s) > 0 for all s .  Then,2.4. Let f I(-m) 
if h(x) = hl + s&, for each hl I&, there exists a constant C(hl ) ,  such that if 
s < C(hl ) ,  (1)has no solution, if s = C(hl ) ,  (1) has one solution, and if s > C(hl ) ,  
(1)has exactly two solutions. 

Actually, as we have stated it, the theorem is a combination of some of the ideas 
from [3], [8]. 

As we shall see later, the requirement that f l ( + m )  < Xz is necessary, if we wish to 
insist on exactly two solutions. However, at least in the piecewise linear case, existence 
of at least two solutions occurs as long as a < A 1  < b. 

Thus, one might conjecture that as long as fl(-03) < A1 < f l ( + m )  < + m ,  
there would still exist at least two solutions for an unbounded interval of s. The 
first result in this direction was in [27], where it was shown that with these less 
restrictive hypotheses, there existed C(hl ) ,  such that if s > C(hl ) ,  there was at least 
one solution, and if s < C(h l ) ,  there was no solution. 

This result clearly needed further clarification, which it received some years later 
in [4], [17], where it was shown that there were indeed at least two solutions if s > 
C(h1). 

Somewhat later, the present authors observed [28] that, for large positive s,  these 
solutions .were approximately the two "linear-type" solutions, in the sense that they 
could be seen as perturbations of the piecewise linear solutions. 

This summarizes the state of the "almost-linear" theory. The single-sign solutions 
of the piecewise linear theory are a good guide for finding lower bounds for the number 
of solutions of the semilinear equation: as long as convexity is maintained and one 
stays below X2,  they are an exact guide. 

It was natural to  ask, then what additional phenomena could occur if, indeed, we 
do go beyond X2? This is the subject of the next section. 

2.2. Asymmetric systems: Crossing the other eigenvalues. This section, 
both from a historical and expository point of view, is divided into two parts. First, 
we consider the results where the nonlinearity f crosses the first several eigenvalues, 
and then the more complicated case where it crosses only higher ones. 

2.2.1. Crossing the first several eigenvalues. In [28], the authors first con- 
sidered the equation 

(6) Au + f (u) = h(x) + s& in R, u = 0 on 6 0  

for large positive s,  under the assumption that the nonlinearity f satisfied the condi- 
t ion 

or more generally, 

where, in addition, it was assumed that A2 was of odd multiplicity. 
We showed that in this case, unlike the previous cases, (6) had at least three, and 

generically four, solutions. 
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We did this by showing that for large positive s ,  there existed approximately linear 
solutions, close to ~ q 5 ~ / ( f ' ( + m )  - (-m) - X I ) ,  respectively. SinceX I ) ,  and ~ q 5 ~ / ( f '  
these were almost solutions of linear equations, it was possible to calculate the Leray- 
Schauder degree of these solutions. The solution close to ~ q 5 ~ / ( f ' ( + m )  - X I )  had a 
topological degree of (-I)", where n was the number of eigenvalues, each counted as 
often as its multiplicity, in the interval (f ' (-m), f'( f m ) ) .  

The solution close to ~q5~ / ( f ' ( -m)  - X I ) ,  being below the first eigenvalue, had a 
topological degree of f l .  

Then, it was shown that on a large ball, the topological degree dLs(O, I+A-'(f (u)-
~ $ 1- h(x)),BR) is zero. From this, by the usual excision properties of degree theory, 
if n is even, we concluded that the degree of the big ball, minus the two small balls 
centered around the two almost linear solutions was -2. This gave us the existence 
of at least one more solution and the generic existence, via Sard's theorem, of at least 
two solutions. 

This showed, for example, in the piecewise linear case, that if X2 < b < X3 and 
X2 is simple, then there must exist additional solutions which must change sign. In 
the piecewise linear case, these were the first nonobvious solutions. 

Naturally, this result raised more questions than it answered. One could ask 
if there were always four solutions, if X2 < f f ( + m )  < X3, or if this generic result 
was the best possible. Furthermore, this first result said nothing about the case 
XZn+1 < f f ( + m )  < XZn+2,  where degree theory (at least in its primitive form) tells 
us nothing. 

The authors made a conjecture that if - m  < f f ( -m)  < X1 < An < f f ( + m )  < 
there should exist at least 2n solutions. Although, ultimately, this conjecture 

proved false (at least for multiple eigenvalues) it inspired an sizable body of research, 
which we now briefly describe. 

Before developing this theme, we should remark that any question that can be 
asked for elliptic partial differential equations can also be asked for the one dimensional 
case, namely, the ordinary differential equation. Naturally, we expect to prove more 
in this case, and we will return to this topic in the next subsection. 

The outstanding question left by [28] was whether four solutions existed. This 
was soon answered in the affirmative in at least three independent ways. 

The first method, and in the authors' opinion most impressive mathematically, 
was that of [24]. By a clever use of degree theory, Hofer built on the observations of 
[28], that there were two almost linear solutions. Both being almost solutions of the 
linear problem, their topological degrees could be calculated to be f1. 

Hofer then showed that there must also exist a critical point which arises as a 
mountain pass, and that if it is isolated, then its topological degree must be -1. Now, 
excise a ball around each of the two almost linear solutions, and a ball around the 
mountain pass, from the big ball, and choose the radius of a big ball so large that 
the degree of the big ball is zero, and conclude that the remainder must have degree 
minus or plus one. 

This powerful argument used only the fact that -m  < f '  ( -m) < X1 and that 
An < f f ( + m )  < X n + l  for some n 2 2. One minor shortcoming of this result is 
that it was heavily dependent on the differential operator in the equation being the 
Laplacian. 

A second avenue was used in [29]. Here, a purely operator-theoretic approach was 
used, relying only on the fact that there was an eigenvalue with positive eigenfunction, 
and one more simple eigenvalue that was crossed. 
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THEOREM2.5. Suppose - m  < f l ( -m)  < X1 < X2 < f l ( + m )  < X y .  Then, there 
exists C*(h) so that if s > C*, the problem 

has at least four solutions. Moreover, if X3 is simple, there exists E > 0 SO that if s is 
suficiently large, then (7) has at least five, and generically six, solutions. 

Since it is possible to give an elegant operator theoretic proof of the main part of 
this theorem (the at least four solution part), we outline it here. 

Proof (when f (u) = bu+ - au-). Let P be projection on the space spanned by 
$1, $2. Of course, I - P is projection on the orthogonal complement. If a < X1 < 
X2 < b < X3, then as in Theorem 3, we can write w = (I- P)u ,v  = P u ,  and 
Au + bu+ - au- = $1 is equivalent to 

By the same arguments as before, we can observe that for each fixed v, there 
exists a unique solution w (v) for (8). Moreover, by substitution into the equation, we 
can verify that if v > 0 or v < 0, then w(v) - 0, and that w(v) depends continuously 
on v. 

Thus, we need only consider the two-dimensional map 

and we ask if @(v) = $1. 
A preliminary observation is that @(v) is never equal to -s$l, since this would 

say that the equation 

must have a solution, which, from our integration-by-parts trick, we know to be 
impossible. 

By the same reasoning, @(v) = 0 implies v = 0. 
Now, choose R sufficiently large that -R$l + $2 < 0 R$l + $2 > 0, and consider 

{@(v),v= t$l + $2, -R < t < R}. 
This is a curve in the two-dimensional P H  space, which ends at the point @(R$l + 

$2) = ( b  - Xi)R$l + (b - X2)$2 (recall that w(R$1 + $2 = 0) and starts at the point 
@(-R$1+ $2) = -(a - Xl)R$l + (a - X2)$2. 

Since the curve ends in the upper half plane, ~ ~ $ 1  c2 > 0, and starts in + ~ ~ $ 2 ,  

the lower half plane, it follows that it must cross the $1-axis. That is, there exists a 
point on the axis such that @(to$l + $2) = s*$l for some to ,  s*. 

By our earlier remarks, s* > 0, and therefore, we can find a solution of 

with s* > 0 and (u,$2) > 0. NOW, multiply across the equation by l / s* .  This 
solves our original problem. Similarly, we find a solution with (u, $2) < 0. Therefore, 
counting the two linear solutions, there are at least four. 

On seeing this result on more than four solutions, in [56]Solimini (who had already 
proved the existence of four solutions if the right-hand side was + E $ ~ , E  # 0)) 
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was able to show, under some additional technical hypotheses, that there were exactly 
four solutions for large s if XZ < fl(+co) < Xg,  and if X3 < fl(+co) < Xg + E ,  then 
there were exactly six solutions. 

This represents the state of progress of the problem of crossing the first n eigen-
values. It is known that if the second eigenvalue is a multiple eigenvalue, and is 
counted as often as its multiplicity, then it is possible to produce a region R, such 
that if a < X1 < Xz = Xg < b, then the equation 

has exactly four solutions, where in [34], L was an elliptic second-order operator and 
in [18]the Laplacian. 

It may still be true, that in some generic sense, there are at least 2n solutions, but 
we appear to be far from a proof. On the other hand, what certainly is clear is that 
the principle enunciated in the introductory section is apparent in this context: if we 
measure the asymmetry i n  the equation by the number of eigenvalues, not counting 
the first, of the Laplacian i n  the interval ( f l ( - c o ) ,  f l ( + m ) ) ,  then the greater the 
asymmetry, the larger the number of oscillatory solutions. 

It is a curious fact that the first eigenvalue is distinguished by not creating any 
new oscillatory solutions, but only changing the distribution of the predictable ones. 

2.2.2. Crossing several higher eigenvalues. Crossing the higher eigenvalues 
is what creates the oscillatory solutions. Therefore, it will not surprise the reader 
when we describe a similar family of results for crossing only some higher eigenvalues. 
One striking result for crossing higher eigenvalues appears in [32], where the following 
alternative theorem is proved. 

THEOREM2.6. Suppose An < f l ( - co )  = a < X n + l , X n + k  < f l ( + m )  = b < 
X n + k + l ,  An + E < f 1  < X n f k  - E .  Then one of the following two alternatives must 
hold: 

The single equation 

has an infinite number of solutions, or the two equations 

AU + f ( u )  = * s#q + h(x) 

have a total of at least four solutions, for large positive s .  
This second alternative may occur as (a) three solutions for s large positive and 

one for s large negative, (b) two solutions for s large positive and two for s large 
negative, or (c) one solution for s large positive and three for s large negative. These 
numbers should be understood as lower bounds. 

The proof is variational in nature, and we will not give it here. 
Earlier results, which did not use the forcing term 41, include [20], [46]. The new 

results are possible because of the combination of the positive forcing term and the 
crossing of the higher eigenvalues. 

Again, we have the situation referred to in the opening section: if the two in- 
gredients, a positive forcing term and asymmetry, are present, we expect multiple 
oscillatory solutions. 

A result of [56] shows that if precisely one simple eigenvalue is crossed, then the 
estimates are precise. Of course, much more information is available in the case of 
the ordinary differential equation. 



548 OSCILLATIONS IN BRIDGES 

2.2.3. Open problems. There is a wealth of open problems remaining in this 
area. The most surprising simple question is about upper bounds. The next problem 
is based on the result of [3]. 

PROBLEM1. If f '(-m) < X1 < f '(+m)  < X3, f " > 0, then can there be at most 
four solutions to the equation for all s ?  

It is known that if s is sufficiently large, then this is the case [56]. 
A second open question concerns the number of solutions if f f ( + m )  = +co, but 

f is allowed to grow slowly enough that compactness is maintained. We know that 
for any f satisfying f '(+co) < +co, there are at least four. 

PROBLEM < X1 < f '  (+m)  + m ,  with appropriate growth restric- 2. If f '  (-co) = 
tions, are there at least four solutions?. . . (much harder) Does the number of solutions 
become unbounded as s goes to +cog 

We can ask similar questions about crossing the higher eigenvalues. Again, apart 
from [56], almost nothing is known. 

PROBLEM If An < X n f l ,  < f ' ( fco)  < Xn+2, f" > 0, can we 3. < f ' (-m) 
say that for all s ,  the equation has at most three solutions? 

2.2.4. A quick look at "elliptic-like" problems. For some time, it has been 
part of the folklore in semilinear elliptic problems that if you replaced the Laplacian 
with a wave operator or with a parabolic operator, then many of the results would 
continue to hold [Ill .  For example, if we study 

Utt - Uxx + f (u) = h(x, t ) ,  
u(0, t )  = u(7r, t)  = 0, 

u(x, t + 27r) = u(x, t ) ,  

then with an additional assumption of monotonicity of f in the variable U, many of 
the standard results do go through [ l l ] .  It is natural, therefore, to wonder which of 
the above results can be extended to this setting. 

One of the problems is that most of the results rely heavily on elliptic properties 
such as the maximum principle and eigenvalue comparison theorems. These simply 
will not work in this new setting. Some results, however, have been obtained. 

The wave operator has spectrum {(n2 -m2, n 2 1,m 2 0). The eigenvalue 1has 
multiplicity one with the positive eigenfunction, sin(x). 

In [40], it was shown that if h(x, t)  = ssin(x)+hl(x, t ) ,  then (11)has at least two 
solutions if 0 < f '  (-co) < 1,and 1< f ' (+m) < 3, and f is monotone increasing.3 

One interesting point is that under these conditions on f ,  the equation 

has a unique solution, by the usual Hammerstein method. Thus, there is a natural 
time-independent unique steady-state solution to (11). Furthermore, it is easy to 
check that it is like s sin(x)/( f '(+m)  - 1). 

Therefore, the additional solution created must by its very nature be oscillatory. 
The asymmetric restoring term has created oscillatory phenomena. 

Much of this area remains unexplored. For example, to the authors' knowledge, 
there are no results on crossing higher eigenvalues using critical point theory. 

There are some minor symmetry restrictions on hl(x,t ) .  
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Similarly, we can look for multiplicity results for the semilinear parabolic problem, 

ut - u,, + f (u) = s sin(x) + h(x, t )  

(13) u(O, t )  = U(T,  t )  = O 

u(x, t + T) = u(x, t). 

Some results are contained in [29] and [40]. 
Perhaps similar results can be obtained for the telegraph equation, where results 

similar to  those of Dolph have been discovered [38]. 

2.3. The one-dimensional boundary value problem. Of course, all the re- 
sults that we have described for elliptic partial differential equations are true for the 
one-dimensional Dirichlet problem. It is natural to  ask what additional information 
can be obtained, using the powerful additional tools available from ordinary differen- 
tial equations. 

Motivated by the short-lived conjecture that crossing the first n eigenvalues would 
create 2n solutions, the authors studied in [30] the equation, 

(14) ul' + f (u) = s sin(x) + hl (x),  u(0) = U(T) = 0. 

The following theorem was proved. 
THEOREM2.7. Let f satisfy f l ( -m)  < 1< n2 < f l ( + m )  < ( n  + I ) ~ .Then for 

2s >> 1, (14) has at least 2n solutions. 
Proof (sketch). For large s ,  we expect the almost linear solutions v* = s sin(x)/ 

( f l (+m)  - 1) and v, = ssin(x) / ( f l ( -m) - 1). Now, centering around the large 
positive solution v*, we let u = v* + w. 

Then w satisfies 

(15) w" + f (v* + w) - f (v*) = 0, w(0) = w(7r) = 0. 

We expect that by solving the initial value problem, w, (0) = 0, w: (0) = E ,  we will find 
that w,will behave much like the solution to the linear problem w" + f l (+m)w = 0. 

Now, let R = v:(O) - v*(O). Then we know that the initial value problem wg + 
f (v* + wR) - f (v*) = 0, wR(0) = 0, wL(0) = R, will look like v, - v*, which has no 
zero in the interval ( 0 , ~ ) .  Putting these two facts together, we can use the well-known 
shooting technique to  prove the existence of the 2n solutions by keeping careful track 
of the number of zeros of the initial value problem wr+  f (v* +wT) -f (v*) = 0, wT(0) = 
0, wk(0) = r, as r varies. 

PROBLEM4. Assuming that f is convex and that f l ( -m)  < 1< n2 < f l ( + m )  < 
(n  + can one give upper bounds on the number of solutions of (14) ? 

We expect that for all s, (14) has a t  most 2n solutions. Amazingly, this is not 
even known in the case n = 2, unless s >> 1. 

We can also ask the question of Problem 2 in this context, when f l ( + m )  = + m .  
As we increase f l (+m)  and it remains finite, we get more and more solutions. It is 
natural to  conjecture that the following statement is true: Suppose that f l ( -m)  < 
1< f l ( + m )  = m .  Then, for all N, there exists SNsuch that if s > SN,(14) has a t  
least 2N solutions. 

There has been some limited progress on this conjecture. Usually, the results 
seem to rely a very specific nonlinearity f (u),  say either u2 or (u+)', and h(x) = 0 
(see [15], [49]). The difficulty seems t o  be that there is no equivalent t o  the large 
almost linear positive solution v* around which to  center for a successful shooting. 
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Again the question arises as to what happens when only the higher eigenvalues 
are crossed. In [23], the following was proved. 

THEOREM2.8. I f n 2  < f f ( - C O )  < (n+l)' and (n+k)' < ff(+m)< ( n + k + l ) 2 ,  
then the total number of solutions of (14 ) )  for s >> 1 and s << -1 is at least 2k + 2,  
assuming the homogeneous problem 

has no nontrivial solution. 
Actually, the theorem said a good deal more, giving additional information on 

precisely how many solutions occurred for large positive s and how many occurred for 
large negative s. 

Again, the paper [23] said nothing about the case where n2 < f' (-m) < (n+ 1)' 
and ff(+m)= + m .  We are tempted to conjecture, based on phase plane analysis 
for the corresponding Neumann problem, that in this case there should be at least 
n solutions if s is large negative, and an increasing unbounded number as s becomes 
large positive. 

Some progress has been made on the first of these two cases (again using special 
nonlinearities and h(x)= 0), none on the second half. Again the problem seems to 
be that there is no natural positive solution about which to center and shoot. 

Again, we have no information here about upper bound, except in the very limited 
circumstances of [56]. 

PROBLEM If nn2< f f ( - C O )< (n+1)' < f f ( + m )  < (n+ 2)', and5. (n+I) ' ,  
f f ' ( s )  > 0, are there always at most three solutions to (14)?  . . . (much  harder) If 
n2 < f f ( - C O )  < (n+1)') (n+k)' < ff(+m)< (n+k + 1)')  and f f ' ( s )  > 0, are there 
at most 2k + 1 ? 

2.4. A short summary on the Dirichlet problem. All of these results have 
a common theme. First, a large positive right-hand side gives rise to an obvious 
almost linear solution. If there is not much asymmetry in the equation, in the sense 
that no eigenvalues are crossed, then this solution is unique. On the other hand, if 
eigenvalues are crossed, large numbers of oscillatory solutions result. 

For the one-dimensional boundary value problem, good lower bounds for the num- 
ber of solutions have been established. In the case of the nonlinearity crossing the 
bottom eigenvalues, solutions only exist for positive multiples of the first eigenfunc- 
tion. In the case of crossing higher eigenvalues, solutions may exist in the positive 
and negative directions. Even in this situation, information on the exact number of 
solutions is hard to come by. 

In the case where the nonlinearity grows more rapidly than linearly, there is little 
information, except for special cases. 

For the case of more than one space dimension, the results are far less complete 
for the elliptic problem. Lower bounds on the number of solutions indicate that 
situation is similar to that of the one-dimensional problem, but the possibility of 
multiple eigenvalues makes the results more difficult. 

3. Back to the suspension bridge. We now return to the problem of nonlinear 
oscillation in a suspension bridge. We have seen that a linear model is insufficient to 
explain the large oscillatory behavior that has been observed. In addition, suspension 
bridges are known to have other nonlinear behaviors such as travelling waves [ 5 ] ,[41].  

In the first section, we will write down the simplest nonlinear partial differential 
equation that we can, which takes account of the fact that the stays connecting the 
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FIG.2. (a) The main  ingredients i n  a one-dimensional suspension bridge. (b) The first idealization 
of the suspension bridge: the beam bending under its own weight is supported by the nonlinear cables. 
Motion of the cables will be treated as an  external forcing term on  the beam. 

cable to the deck of the bridge are fundamentally nonlinear, in that if you pull on a 
rope, it resists, whereas if you push, it does not. We shall treat the stays as one-sided 
springs, obeying Hooke's law, with a restoring force proportional to the displacement 
from the unstretched state if stretched, and with no restoring force if compressed (see 
Fig. 2). 

The roadbed will be treated as a one-dimensional vibrating beam [55] .The motion 
of the cable will be ignored except insofar as the stays transmit a forcing term to the 
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roadbed. This gives rise to the following equation: 

Thus the suspension bridge is seen as a beam of length L, with hinged ends, 
whose downward deflection is measured by u(x, t ) ,  with a small viscous damping 
term, subject to three separate forces; the stays, holding it up as nonlinear springs 
with spring constant k, the weight per unit length of the bridge W(x) pushing it 
down, and the external forcing term ~f (x, t ) ,  about whose origin we will not comment 
until later, but which we will assume to be periodic. The loading W(x) would usually 
be constant. 

We emphasize at this point that we do not believe this completely models the 
complex behavior of the bridge. However, if this simple model exhibits unexpected 
complex oscillatory behavior, then a more accurate model can reasonably be expected 
to do so. 

Normally, the suspension bridge will be close to  the equilibrium position, given 
as the solution of the steady state equation 

If we have a small periodic forcing term E f (x, t ) ,  we expect to find a periodic 
solution of (16), which is close to equilibrium. This will be a solution of the linear 
equation 

(18) 	 utt + EIu,,,, + Sut + ku = W(x) +~f(x, t) ,  

u(0, t )  = u(L, t)  = u,,(O, t )  = u,,(L, t)  = 0. 

If we are studying small-amplitude solutions, we expect the linear model to give 
good agreement with the experimental data. The question, of course, is whether (16) 
has any other solutions. 

3.1. Periodic solutions of a bridge-like ordinary differential equation. 
We start the discussion of (16) with an oversimplification. Instead of taking the weight 
of the bridge to be constant, we replace it by the first term in the eigenfunction expan- 
sion of the constant function; that is, we replace W by the term W(x) = Wo s i n ( ~ x / L ) .  
This introduces an error of magnitude 10% in the loading and somewhat less in the 
steady-state deflection. 

Second, we assume the forcing term is given by f (x, t)  = f (t) s i n ( ~ x / L ) .  This is a 
peculiar term, but there is no reason why the bridge cannot have this type of forcing 
term. 

Finally, instead of looking for general solutions of (16), we look for no-node solu- 
tions of the form u(x, t )  = y(t) s i n ( ~ x / L ) .  (These no-nodal solutions were the most 
commonly observed type for low velocities on the Tacoma Narrows Bridge [ 5 ] . )  

When this u(x, t)  is substituted into (16), we can take the term s i n ( ~ x / L )  out of 
the nonlinearity, and divide across by it. When we do this, we obtain 

If we let b = E I ( T / L ) ~+ k and a = E I ( T / L ) ~ ,we obtain (with the exception of the 
small damping term) the type of equation studied as a boundary value problem in $2. 
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Thus, we are led to consider the periodic solutions of the problem 

with f '(+co) = b and f '  (-co) = a. The constant c is a multiple of the first eigenfunc- 
tion, and g is periodic. We ask if there are multiple solutions when there is a large 
gap between a and b. From the earlier results, we expect a large number of solutions 
as the difference between a and b increase, and indeed this proves to be the case. 

The first of these theorems was proved in [33]. 
THEOREM3.1. Let N+ be the number of integers j, such that I /&  + I/& > 

2 / j  > 2/&. Then for large positive c, (20) has at least 2N+ + 1 solutions. Let N- 
be the number of integers j, such that I /& + I/& < 2 / j  < 2/&. Then for large 
negative c, the (20) has at least 2N- + 1 solutions. 

Assume that y'' + by+ - ay- = 0 has no nontrivial 27r-periodic solutions. Note 
that N+ +N = 2k + 2, where k is the number of eigenvalues crossed. Let us look at 
this result more closely for the piecewise linear bridge-like equation. 

If b # n2, we can explicitly write down a 27r-periodic solution of this equation, 
namely, l /b  + &yl ( t ) ,  where yl is the 27r-periodic solution of y'' + by = g(t).  This is 
the physically obvious solution. A large push c = 1 in (21), plus a small vibrating 
tern1 ~ g ( t )  produces a large displacement l /b  plus a small oscillation about the new 
equilibrium of order of magnitude E. Moreover, by the usual Dolph-type argument, if 
n2 < a ,  b < (n+ I)', then this is a unique solution of period 27r. 

Theorem 3.1 is less intuitively obvious. It says that if the difference between a 
and b is large, then additional numbers of oscillatory solutions exist, and their order 
of magnitude is that of c. 

This is the beginning of the theory we felt was required to explain the large 
oscillations of the Tacoma Narrows Bridge. The subject arises naturally from the 
suspension bridge, and only requires that the relevant parameters fall in intervals. 
The intervals get larger as the bridge relies more on the spring constant k and less on 
the rigidity of the deck. 

This result raises more questions than it answers. For example, it says nothing 
about what happens if there is small damping. Indeed, if we take E = 0, then the 
introduction of small damping destroys the large amplitude solutions. 

If suitable conditions on g(t) are imposed to guarantee that the large amplitude 
solutions persist in the presence of damping, we can then ask whether they are stable. 
In addition, we can ask whether, with large amplitude initial data, the solution of 
the initial value problem converges to the large amplitude periodic solution or the 
solution close to steady-state. 

These questions were partially answered in [21]. If we look for T-periodic solutions 
of 

with 27r/& < T < 7r/& + TI&, then we can find, by simple phase-plane analysis, 
a large amplitude solution of order of magnitude one, and of least period T which we 
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F I G .  3. ( a )  T h e  large amplitude solution reached by  suitable choice of large initial conditions. (b)  
The  results of starting near the "approximately linear" solution. 

denote by uo. It was shown in [ Z l ] ,  that with a mild nondegeneracy condition on g(t), 
with E and c small, then there exist large amplitude solutions of 

which are asymptotically stable and close to a translate of uo. 
This, in turn, leads to  the question of whether these solutions arise naturally in 

numerical solutions of the initial value problem. Extensive computation has shown, 
as detailed in [21], that when viewed as a two parameter family, the solutions of 

behaved like a cusp, with a lower surface (the approximately linear solutions) and an 
asymptotically stable upper surface. The focal point of the cusp appears at the point 
of linear resonance, p = m .  

If we start with very small initial data, we stay on the lower surface until some 
critical value of amplitude XO(p), and then jump to the upper surface. Computation 
then showed that that as X becomes large the solution again becomes unique. In [35], 
this was proved analytically. 

The two surfaces are visible in Fig. 3, where the amplitude of the periodic solution 
converged to  in large time, as computed numerically, is shown with either large or 
small initial data. The surface then becomes infinite, apparently, when 2/p = 1 / m +  
1 / a .  If the constant 13 is replaced by the constant 1 (making the bridge more 
flexible and relying more on the cable) we find that the interval of multiple period 
solutions increases. 

This summarizes the state of knowledge of the piecewise linear case. Perhaps 
the most interesting open problem is to describe in analytic terms the properties of 
the cusp-like surface that is revealed in computation. Although there have been some 
results of this type for the boundary value problem [57], [6],[49], we know of no results 
in the periodic setting. 
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3.2. Results for the partial differential equation. We now study the partial 
differential equation 

(25) 	 ~ t t+u,,,, + but = -ku+ + WO+~f(x, t ) ,  

u(0, t )  = u(L, t )  = u,,(O, t )  = u,,(L, t )  = 0, 

which we approximated in the earlier subsection. As we saw, this represents the bridge 
as a vibrating beam of length L, with hinged ends, supported on one side by nonlinear 
springs with spring constant k. The springs are in a state of tension, due to the weight 
of the roadbed, which is now taken to be Woper unit length. This is represented in 
Fig. 2. Needless to say, the results are not as plentiful as for the ordinary differential 
equation case. 

In [39], the following result was proved. 
THEOREM3.2. Let 6= 0, L = r, and T = r .  In addition, let f (x, t )  be even in 

t, T-periodic in t, and even in x about r / 2 .  Then, if 0 < k < 3, (25) has a unique 
periodic solution of periodic r (the physically obvious one of small oscillation about 
the equilibrium). However, if 3 < k < 15, the equation had, in addition, a large 
amplitude periodic solution. 

This can be summarized as, "Strengthening a bridge can lead to its destruction," 
in the sense that strengthening the stays can increase k. It is a curious fact that this 
was one of the first alterations proposed and put into effect for the Tacoma Narrows 
Bridge in the futile efforts to modify its dynamic behavior before its eventual collapse. 
Needless to say, it did not have the desired effect. 

PROBLEM Is there a nondegeneracy condition on f (x ,  t), which will ensure 6. 
that solutions of (25) persist if damping is present? 

PROBLEM7. Can the restriction that k < 15 be removed? When comparing 
this theorem with the corresponding ODE result, it seems clear that increasing k still 
further ought to increase rather than decrease the number of solutions. (This restric- 
tion is a limitation of the method of proof.) 

In search of further information about solutions of (25), we solved the equation 
numerically. We used a finite difference method, implicit in the linear part, and 
explicit in the nonlinear part. The method proved stable under the usual precautions, 
such as halving stepsizes, and comparing results. Since we were using a large amount 
of CPU-time, most of the results described here were done with a stepsize in x of 0.1, 
and a stepsize in t of 0.05. 

Equation (25) was solved for various lengths of the bridge with 6 = 0.01, E l  = 
1,k = 18,W = 10, with various forcing terms of the general form X sin(pt) sin(nrx/L) 
and various initial conditions of either large or small amplitude were used. In this 
way, we hoped that if there were large amplitude periodic solutions around, we would 
converge to them in large time. This plan worked, and showed that there were indeed 
multiple solutions. 

For a short bridge, L = 3, the ordinary differential approximation was an excellent 
model. If we took n = 1,the nunode forcing term, we could indeed expect to converge 
in large time, to different no-node periodic solutions over a wide range of X and p. 
Figure 4 shows the amplitude of the eventual solution as a function of X and p, with 
either large or small initial conditions. The forcing term is XsinptsinrxlL with 
L = 3.0. The frequency p varies from left to right, from p = 3.0 to p = 8.4, and X 
varies from 0.0 to 6.0. Resonance is clearly visible for small values of A,  near p = 4.4. 
Below resonance, it is clear that there are multiple solutions. The spikes on the 



OSCILLATIONS IN BRIDGES 

(b) 

F I G .  4 .  T h e  magn i tude  of t he  finite difference solut ion of t he  partial differential equation af ter  large 
t i m e  wi th  e i ther  (a) large initial values, o r  (b) small  initial values. 

right of resonance indicate that the high frequency perturbation has given rise to  a 
half-frequency large-amplitude solution. 

For a longer bridge, L = 6, and all other constants the same, the same phenom- 
ena were observed. However, even with a symmetric forcing term, sometimes the 
large amplitude symmetric solution appeared to  become unstable, and some form of 
symmetry-breaking occurred, resulting in convergence to  solutions which oscillated 
at one end; see Fig. 5. Some slight asymmetry is introduced into the system by the 
roundoff errors in n,which was deliberately left as 3.14159. 

Another intriguing numerical result was convergence to  a solution that appeared 
to  be a wave, travelling up and down the bridge, and being reflected at the end-points. 

Possibly, in a two-space dimensional model, the large amplitude solution would 
become unstable in a two-dimensional way, perhaps giving rise to  the torsional motion 
that arose in the Tacoma Narrows Bridge, when the amplitude of the one-dimensional 
motions became large in the extremely violent storm that destroyed it. 

PROBLEM C a n  any  stability results be established for the large-amplitude 8. 
solutions? 

PROBLEM9. C a n  we give a rigorous proof of the existence of unsymmetr ic  solu- 
t ions of ( 2 5 )  in the case where 6= 0 and E = O ?  

3.3. Travelling waves at the Golden Gate Bridge. One of the most inter- 
esting nonlinear phenomena mentioned in [5] was not the oscillation of the Tacoma 
Narrows Bridge, but the appearance of travelling waves on the Golden Gate Bridge. 
During an unusually violent storm on the night of Feb. 9, 1938, Mr. R. G. Cone, the 
chief engineer of the bridge, reported: 

The force of the wind was so strong that it was impossible t o  stand 
erect on the sidewalk, or the roadway of the bridge. . . . I observed 
that the suspended structure of the bridge was undulating vertically 
in a wavelike motion of considerable amplitude . . . the  wave motion 
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F I G .  5. Multiple solutions of ( 2 5 )  with constant values and forcing t e r m  as described i n  53.2, with 
n = 1 and p and X given. 

appeared to be similar to that made by cracking a whip. The truss 
would be quiet for a second, and then in the distance, one could see 
a running wave of several nodes approaching. . . . the oscillations and 
deflections of the bridge were so pronounced that they would seem 
unbelievable. (pp. ix- 1) 
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F I G .  6 .  A likely candidate for the travelling wave as described by R. G. Cone on  the Golden Gate 
Bridge i n  1938. " In  the distance, one could see a mnning wave of several nodes approaching.. .the 
oscillations and deflections of the bridge were so pronounced that they would seem unbelievable." 

Although the oscillation continued for some time, when Mr. Cone eventually 
returned with a camera, it had died down. A good test of any nonlinear model is 
whether it can show this type of behavior. In [41], (25) was assumed to hold on an 
infinite beam, and it was shown that there existed large families of travelling waves. 
Figure 6 shows a likely candidate for the waves described above. 

The solution shown in Fig. 6 was obtained by finding solutions of the 

on the real line, requiring the function y ( x )  to tend to zero exponentially fast as x 
tends to infinity. Since finding solutions of this form requires solving an ordinary 
differential equation, solutions are found explicitly. By suitable normalization, we 
can take k = 1and W = 1. Then W = 1is an equilibrium. 

We look for solutions of the form u(x, t )= 1+y ( x  - ct)  so the function y satisfies 

on the real line, decaying exponentially at infinity. As shown in [41], this involves 
solving the two linear second order equations y"" + c2y" = 1 for y < -1, and y"" + 
c~~ + y = 0 for y > -1 and matching them at y = 1. It is, in essence, an extremely 
difficult second-year undergraduate calculus problem. 

PROBLEM10. Show that the travelling waves whose existence was demonstrated 
i n  [41] are stable. In  addition, show that i f  the nonlinearity -ku+ is replaced by a 
somewhat more general function, the solutions persist. More generally, find properties 
of these families of travelling waves, including their interactions. 

PROBLEM11. Give a variational or other functional-analytic proof the solutions 
y exist. Try to generalize to more than one space dimension for the partial differential 
equation 
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F I G .  7 .  A m o r e  complicated mode l  o f  t he  one -d imens iona l  bridge represents  t he  coupling of t h e  cable 
( a  vibrating spring)  and  t h e  roadbed ( a  vibrating beam) by the  s tays ,  treated as  non l inear  springs 
( s e e  ( 2 6 ) ) .  

or (better), do the same for a more general f which is "like" ( y  + 1)+ - 1. 

3.4. Coupling the motions of the roadbed and the cable. It is unnatural 
to ignore the motion of the cable in this study. In this section, we will make a very 
brief beginning into an area that promises to bear much fruit in the future. 

We treat the cable as a vibrating string, coupled with the vibrating beam of 
the roadbed by nonlinear springs that have a spring constant k ,  if expanded, but 
no restoring force if compressed. The beam is subject to its weight, and the cable is 
subject to some oscillatory forcing term which might be due to the wind or to motions 
in the towers or side-spans. This idealization is shown in Fig. 7. 

Then we study 

The primary difference between this system and the model used in the classical en- 
gineering literature [7] is that in the engineering literature, the stays connecting the 
roadbed to the supporting cable are treated as inextensible rods, incapable of either 
extension or compression. This allows the motion of the cable and the roadbed to be 
treated as a single equation, but is clearly inappropriate when considering the large 
scale oscillations in which the stays are known to alternately loosen and tighten [ 5 ] .  

The mass per unit length of the cable, ml ,  is much less than the mass per unit 
length of the roadbed. If we divide across by the respective masses, we get the system 
of equations 
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Here, the variable v measures the displacement from equilibrium of the cable and 
the variable u measures the displacement of the beam. Both are measured in the 
downward direction. The stays connecting the beam and the string act so as to pull 
the cable down, hence the minus sign in the first equation, and to hold the roadbed 
up, therefore causing a plus sign in the second. 

Since, in both equations, we have divided across by the mass per unit length of 
the bridge, we expect that k2 will be an order of magnitude smaller than kl. The 
constants cl and c2 represent the relative strengths of the cable and the roadbed. 

Little work has been done on (26). We expect that it will prove just as rich in 
interesting phenomena as the earlier single-equation model. 

However, in the spirit of 53.1, we could use the earlier approximation and replace 
the constant term in the second equation by the first term in its eigenfunction expan- 
sion, thus giving us a right-hand side Wo(x) = Wo sin(rx/L) in the second equation 
of (26). 

This was a good approximation for the simpler phenomena of the bridge of length 
three, so we expect it to be a similarly good guide in this setting. 

Again, we look for no-node solutions of the form u(x, t )  = y(t) sin(rx/L) and 
v(x, t)  = sin(rx/L), and impose a forcing term of the form f (x, t)  = g(t) sin(rx/L). 
After the same manipulations as before, this leads to an equation of the form 

This simple and innocent-looking equation has some very interesting properties 
that we are just beginning to explore. There are some preliminary results, theoretical 
and numerical, which we will briefly describe. 

First, the theoretical results. We have studied the undamped case S = 0, under 
the additional assumption that k2 is small. In this case, we were able to show that 
(27) has, for sufficiently small E and k2, large and small amplitude periodic solutions 
over a wide range of amplitude and frequency. The large amplitude solutions had y, 
the motion of the roadbed, close to equilibrium, and z, the motion of the cable, large. 

Thus, we are led to predict that for this type of bridge, there exists the phe- 
nomenon of galloping cables. What else can happen is something that has yet to be 
explored, although we do have some numerical evidence. 

Second, the numerical results. We solved system (27), using a standard IMSL 
subroutine on a mainframe using high precision, with the constants taken as a1 = 10, 
a2 = 0.1, S1 = S2 = 0.01, kl = 10.0, and k2 = 1.0. The weight Wo was one and the 
forcing term g((t) = X sin(pt) and we looked for periodic solutions for various values 
of X and p. These values were supposed to represent a highly flexible bridge with a 
large (relatively speaking) weight per unit length, and a strong cable. 

Figure 8 shows two of the interesting phenomena that we found. As predicted by 
the theoretical result mentioned above, there was indeed the phenomenon of galloping. 
With p = 4.25, as X varies from 0.3 to 0.4, we find two different periodic solutions, 
one of large amplitude, and one of small amplitude. In both, the bridge is barely 
moving. 

What happens when X increase further, to the point where the bridge is moving 
more violently? Now, we take p equal to 4.5. Figure 9 shows how, when X increases 
from 2.3 to 2.4, we get a different large-scale motion, in which the bridge and the 
cable are coupled. The cable appears to be in a beat-like oscillation and the bridge 
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F I G .  8 .  Nonlinear behavior i n  the numerical solutions of the simplified cable-bridge equation (27) .  

is moving in a large period motion. As we increase X even further to 3.0, a different 
periodic motion appears, in which the cable appears to  be driven by the bridge, but 
is also oscillating at the frequency of the forcing term. 

This suggests an entirely new mechanism to explain why a suspension bridge 
would oscillate in a violent storm. First, the gusts of wind would act as a random 
large buffeting force on the cable superstructure, causing the towers and cable to  go 
into a high frequency periodic motion (much as what happens when a guitar string is 
struck randomly). Then, as suggested in Fig. 9, nonlinear coupling would take place, 
and the bridge would go into a low frequency motion. 

This does not address the torsional oscillation which was eventually responsible 
for the destruction of the Tacoma Narrows Bridge, but provides a reasonable expla- 
nation of the vertical modes of oscillation which were most commonly observed on 
this bridge. In the next section, we shall make some preliminary comments on the 
torsional oscillations. 
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F I G .  9 .  The  different types of oscillation as the magnitude of the forcing t e r m  increases, i n  the large 
t ime solution of the bridge-cable one-dimensional system. 

3.5. Some tentative ideas on torsional oscillation. This is the motion of 
the Tacoma Narrows Bridge which most people recall from the films of the event, and 
indeed the one which was responsible for the ultimate destruction of the bridge. We 
recall [5]that the bridge had been oscillating violently in a one-dimensional fashion 
during an unusually powerful storm. Then, the motion changed rapidly from the 
one-dimensional to a twisting torsional type, which persisted for approximately forty 
minutes, after which segments of the bridge began to fall into the river. 

The film, and indeed contemporary reports, are clear that the cables and stays 
supporting the roadbed were alternatively loosening and tightening, thus creating a 
nonlinear effect. 

It is our hope to  explain this sudden transition, but this remains a long way off. 
However, we began by trying to  understand the dynamics of a far simpler model. It is 
our belief that if the simplest model has some of the above described behavior, then 
so will the more accurate model of the bridge, when eventually formulated in terms 
of a long narrow vibrating plate, coupled at its side boundary with the motions of the 
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cables in the usual nonlinear way. 
Thus, we consider a rigid beam of length 21, suspended at its ends from two 

nonlinear cables, of spring constant k (recall that this means that they resist expansion 
by k-times the distance, but do not resist compression). This is illustrated in Fig. 10. 

The bar has weight 10 uniformly distributed along its length, and will normally be 
in equilibrium when the cables are in tension. The motion of the bar will be described 
by the two variables y, which measures the vertical distance of the center of gravity 
from the position of the unflexed cables, and 8, which measures the angle of the bar 
from the horizontal. 

A solution which has a large y component and a small 8 component would be 
primarily a vertical motion, whereas a solution with a small y component and a large 
19 component would be primarily a torsional motion. 

We will also add two factors. There will be a small viscous damping term, which 
would naturally be present, and a small linear restoring term, which we added to 
prevent rotational motions. Clearly, the longitudinal strength of the bridge would 
provide some such force. 

We now have a simple nonlinear mechanical system, and we can ask about large 
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FIG.10. A n  infEexible'rod, supported by two nonlinear springs and pulled downward by i ts  own 
weight gives rise t o  a system such as (28). 

amplitude periodic solutions for various imposed forcing terms, which might be of 
aerodynamical or mechanical origin. 

An example of such a system is the following: 

(28) 8'' 	= -.OIO1 - 38 + (3k/l) cos(8) [(y - a sin 8)+ - (y + a sin 8)+] + a1 sin pt,  

yll = -O.O1yl - 3y - k[(y - a sin 8)+ + (y + asin 8)+] + 20 + a2 sinpt. 

Usually the spring constant k will be taken as 10 for the rest of this section. This 
gives an equilibrium of y = 20123 and 8 = 0. 

Note some features of this system. If the motion is small, then y will be close to 
1 and 0 will be close to zero. Thus, the term (y - asin8)+ will be the linear term 
(y - a sin 8), as will (y + a sin 8)+. Thus, we get the linear spring equation for y and 
the forced pendulum equation for 8. Interest in such equations has been renewed 
recently, starting with [12]. 

If we finally approximate sin 8 by 8, then we get a pair of uncoupled linear equ* 
tions. Thus, we expect that the linear model will give good accuracy for the small 
oscillation case. 

Our question is different. We ask whether (10) has multiple periodic solutions for 
various forcing terms, and if it does, what do they look like? In the case where 8' and 
y1 are absent, the problem is variational and the method of [13] can be used to find 
multiple solutions. See also [43]. 

We are not in a position to give a complete description of the numerical results 
which we have obtained on this dynamical system, but we include two results which 
are representative, and indicate that this system does indeed exhibit the behavior 
that we are attempting to model. 
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(b) 
F I G .  11. Numerical solutions of (28)  after large t ime with the same forcing term, although with 
different initial conditions. ( a )  A small oscillation i n  the vertical direction, with an imperceptible 
torsional motion. (b) With  different initial conditions, we can end up with an extremely large vertical 
motion, with some torsional component. 

First, we expected to see large amplitude up and down motion, with multiple 
solutions of periodic type. This we saw. In Fig. 11 we show how a large and small 
vertical periodic motion, with the same forcing term can coexist, with the eventual 
result depending on the initial values, whereas, in Fig. 12, we show how, again with 
the same forcing term, we can have torsional or vertical motion, depending on the 
initial values. 

This, we feel, is the likely explanation of the destruction of the Tacoma Narrows 
Bridge. An impact, due either to an unusually strong gust of wind, or to a minor 
structural failure, provided sufficient energy to send the bridge from one-dimensional 
to torsional orbits. We expect that this phenomenon will be shown to exist for rea- 
sonable models of the bridge, not just for the suspended rod. 

3.6. Some last comments and some self-criticism. All of the models which 
we have discussed are painfully inadequate. For example, if one were hoping to model 
a real bridge, it would be impossible to ignore the coupling that exists between the 
main span and the side-spans. 
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F I G .  12.  The real ezplanation of the Tacoma Narrows Bridge failure? With the same forcing term, 
the rod can go into large vertical motion with only a small torsional component ( a ) ,  or a large 
torsional oscillation with a small high-frequency shaking in the vertical direction (b). 

This occurs in at least two ways. First, as either span is deflected, this results in 
motion of the cables and towers, thereby transmitting, through the stays, a forcing 
term on the other spans. Also, the boundary conditions for the main span are coupled 
with those of the side-span, rather than having each span act as if hinged at both ends. 
A complete model would also take into account the motions of the towers. These are 
known to exhibit large amplitude oscillatory behavior [42]. 

We have used only the simplest form of the beam equation. We are aware that 
there are more complicated versions, but we feel that if the simplest form has ex- 
tremely complicated behavior, then the more complicated forms will surely have at 
least as complicated behavior. 

We could also question whether our numerical analysis represents true solutions 
of the bridge equation. To some extent, we feel that this is not so important, since 
either the continuous or discrete versions are probably equally good (or bad) models 
for the bridge. 

However, this does suggest an intriguing new design for a flexible suspension 
bridge. The problem, according to our theory, lies in the large asymmetry between 
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FIG.13. The Lazer-McKenna light flezible long-span suspension bridge. It would be equipped with 
ccbles above and below the roadbed, so as to make the structure more linear and hence less p m e  to 
large-sale oscillation. There is some evidence, numerical and historical, that this might work (see 
$3.6). 


the downward and the upward direction. A bridge less prone to oscillation would be 
created if the interval of asymmetry was made smaller, by having approximately equal 
restoring forces in the upward and downward direction. One way to do this would be 
to have two cable systems, one above the roadbed and one below, thereby making the 
bridge more symmetric and less nonlinear. See Fig. 13. 

On a lighter note, it may strike the reader as ironic that the main conclusion of 
all this nonlinear analysis is that the engineers should attempt to linearize the bridge. 

Surprisingly, there is some engineering evidence that this might work, and it 
comes from two sources. First there is the case of the first Tacoma Narrows Bridge.4 
Apparently, one of the measures taken to try to stabilize the bridge was to sink one 
large concrete block on the riverbed beneath each of the side-spans and tie the blocks 
to the side-spans of the bridge with cables. 

This worked in the sense that it had the effect of quieting the motion in the side- 
spans, but did nothing about the motions of the main span. However, these cables 
were not as strong as those of the superstructure of the bridge. 

A second example of the efficacy of tie-down cables is given by the history of a 
suspension bridge between Lewiston, New York, and Niagara, Canada, spanning the 
Niagara River [7]. This bridge was at the time the longest bridge in the world (1043 
feet). It was partially stabilized against motions by guy cables, extending from the 
roadbed downward to the side of the gorge over which the structure passed. Built in 
1850, the bridge lasted without incident for fourteen years until the winter of 1864-65. 

At that time, due to the formation of a large ice-jam upriver from the structure, 
the tie-down cables were removed. It was apparently feared that when the jam broke 
in the spring, the ice would fall on the guys, and damage it. Within a short period of 
time, the bridge was destroyed by a heavy wind. 

An engineer, when discussing some of these results with one of us, translated our 
results into simple engineering terms when he remarked, "What you are saying is that 
the bridge was held up enough, but not held down enough." 

Again we quote from the New York Times of November 9, 1940. "Before the collapse, temporary 
ties (cables) had checked the vertical motion with noticeably good effect. Unfortunately, the studies 
had not progressed far enough for a permanent stabilizer to be designed. That they will be pushed to 
a conclusion there can be no doubt. The evolution of the suspension bridge depends on it. (emphasis 
added) " 
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Engineers are also experimenting with ways of holding the bridge down. In [26], 
it is suggested that a bridge be equipped with two pipelines, running the length of the 
bridge on each side of the road, which in normal circumstances would remain empty. 
However, once strong winds develop, they would be filled with water, thus having the 
effect of adding additional mass to the bridge. Our theory suggests that this could 
be extremely dangerous, since increasing the mass could have the effect of increasing 
the magnitude of the oscillation, once it occurs. 

One final remark: there are several long span flexible suspension bridges in 
earthquake-prone parts of the world, such as California and Japan. An earthquake 
is precisely the large amplitude forcing term which should cause these large ampli- 
tude oscillations. If the civil engineering community decides not to implement our 
suggestions, then maybe they could at least agree to  a continuous monitoring of the 
bridges by video- ame eras.^ In this way, when "the big one" comes to California, the 
bridges, in the short interval before their final collapse, will provide confirmation of 
our theory, and perhaps, valuable data for its continued refinement. 

4. An unexpected connection with naval architecture. The purpose of 
this section is to begin a study of the effect of nonlinear oscillations in floating beams 
[51], [9]. In naval architecture, a ship is frequently modelled as a floating beam. How- 
ever, the nonlinear effects that occur when the ship is partly out of the water (known 
in the literature as "bottom slamming") or partly submerged (known as wetting) have 
not been the subject of much study. Thus, we would expect the predictions of linear 
theory to  be quite accurate for small oscillations but not necessarily for large ones. 

Although no catastrophic failures of ships have been directly attributed to large- 
scale oscillations of ships, the authors have found at least one case which we feel can 
only be explained by the presence of large-scale flexings, the destruction of the U.S.S. 
Orion. 

In [51], on December 2, 1925, this ship was steaming out of the Chesapeake Capes, 
very nearly head on into a winds of force 9 on the Beaufort scale, approximately 50 
m.p.h., which had been blowing onshore for at least 24 hours. The draft of the ship 
was 29.8 feet forward and 31.2 feet aft. The charted depth in the area being crossed 
by the ship was at least 35 feet. The waves were reported by the ship personnel to be 
150 feet long and 10 feet high. 

Within 10 minutes of the time that the upsea course was taken, 

This was written some time before the California earthquake of October 1989. According to  
witnesses who were on the Golden Gate Bridge a t  the time, the bridge did indeed go immediately into 
the nonlinear regime, with the stays connecting the roadbed to  the cables alternately loosening and 
tightening "like spaghetti." The bridge oscillated for about one minute, about four times as long as 
the actual earthquake. However, possibly due to  the angle of incidence of the earthquake waves, it did 
not develop significant torsional modes. Since an earthquake of up to ten times this magnitude and 
duration can reasonably be expected, this experience reinforces the need for understanding nonlinear 
behavior in suspension bridges. 

On a more conjectural note, the collapse of the double-decker interstate 1-880 was peculiar in 
the fact that although the upper deck collapsed immediately, most of the lower deck remained intact. 
One possible explanation for this is that the upper deck was supported only from below, rather like 
the nonlinear beams of s3.2. On the other hand, the lower deck was held in place from below by 
the supports, and from above by the weight of the upper deck. Thus, one might be led to reason 
that the upper deck, supported as it was by the poorly reinforced concrete columns (which resist 
compression but not expansion), would be more vulnerable to  travelling wave behavior. 

To judge from eyewitness accounts from the New York Times,October 19, 1989, this may have 
happened. "I looked in my rearview mirror and I saw the highway coming a t  me like a wave. The 
freeway started to go up and down like waves on the ocean," was an account of a survivor on the 
upper roadway. 
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the ship began to experience "excessive vibration". . . . Although the 
record is not clear, the ship was undoubtedly pounding its forefoot 
on the bottom at this time. Following every impact, the hull would 
vibrate for a few seconds, probably until just before the next impact. 

Although slowed to  half speed, the "vibrations" continued to from 
30 to 40 minutes.. . . The ship was turned around in the sea and taken 
back to port, where its bottom was found to be pushed upwards and 
fractured. The inner bottom, for a distance of from about 25 to 130 
feet abaft the stem, was found to be buckled and distorted. 

Despite the reported small size of the waves relative to the ship, 
the bow apparently pounded on the sea bed intermittently for about 
20 minutes. The final damage was so severe that the ship was un-
loaded, decommissioned at once, and never again put back into mil- 
itary service. (emphasis added) 

Given that this represents a forced oscillation problem, it seems clear that flexing 
of the ship must have played a role in this curious oscillation that seemed to favor 
one end of the ship. It would be difficult to explain what sort of forcing term could 
have created this effect in the linear theory. 

The other thing that seems clear from the admittedly sketchy accounts that are 
available to us is that the frequency of the forcing term cannot have been as important 
as would have been expected if we were seeking to explain this phenomenon solely 
using the frequency of the forcing term. 

In this section, we consider a nonlinear model, which takes into account that 
the ship may be partly lifting out of the water or partly submerged, but not both. 
We show that this causes large amplitude oscillations that would not be predicted 
by the linear theory. These oscillations occur in a wide range of frequencies, and 
often several different periodic oscillations can coexist for the same forcing term. In 
this situation, whether the ship goes into large or small oscillations depends on the 
initial conditions. Furthermore, numerical results indicate that the magnitude of the 
oscillations increases as the frequency of the forcing t e rm is decreased. It is also a 
striking feature of this model that asymmetric solutions, with oscillations favoring one 
end, are predicted in the presence of almost symmetric forcing data. 

The authors also feel that this may be an explanation for catastrophic failures 
such as the wreck of the S.S. Edmund Fitzgerald, about which we shall say more in 
94.4. 

In the first section, we derive the equation for the floating beam, we then state 
a theorem about large amplitude periodic flexings for this equation, and we briefly 
describe the results of some numerical calculations. 

4.1. The floating beam: Almost a suspension bridge. Consider a rectan- 
gular block of cross section A floating in water. Assume that the difference in density 
between the block and water is p. Let U(t) denote the depth of the bottom of the 
block as it floats. Assume that the block is floating high in the water, so that it may 
lift out of the water but is never submerged. Then the force pushing the block up in 
the water is given by pU(t)A if U is positive and zero if U is negative. Thus, if there 
is an external forcing term, as well as the force of gravity, the equation satisfied by 
the block is given by 
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FIG. 14. A cross-section of the floating beam at position x, in (left) the lightly loaded case and 
(right) the heavily loaded case. 

for suitable constants b and c. 
Now consider the case where the block is almost completely submerged and only 

the distance measured upwards, U(t), is above the water. In this case, two forces will 
act on the block. There will again be a force due to flotation of LAp if the block is 
completely submerged or (L -U(t))p if the top of the block is a distance U out of the 
water. This force will act in the positive U direction. In the negative direction, there 
will again be a force W, due to gravity. Again, the equation satisfied by the block 
will be 

m-
a2u 

= LAp -W -ApUf + f (t).
at2 


In either case, the equation satisfied is of the form 


for suitable constants B and C. See Fig. 14. 
If we consider the case, not of a floating block, but a floating beam of length L, 

it is clear that the equation will be of the form 

(32) Utt + U,,,, + 6Ut + aU+ = c + f (x, t ) ,  

where now U = U(x, t), where 0 5 x < L and where the ends of the beam satisfy 
free-end boundary conditions, i.e., 

uxx(0, t) = Uxx (L, t )  = Uxxx (0, t)  = Uxxx (L, t) = 0. 

The constant a is a measure of the cross section of the beam, and the constant 6 
represents the viscous damping in the beam. 

It is a surprising fact that the equation of the suspension bridge and the floating 
beam differ only in the boundary conditions. 

Here, we examine periodic solutions of this equation, subject to the free-end 
boundary conditions. In order to approach this problem, we must first gather some 
information on the operator LU = Utt +Uxx,, with these boundary conditions. First, 
we consider the case where the interval is (0, r). 

In turn, to do this, we must first understand the ordinary differential operator 

with the additional symmetry condition that U is symmetric about 7r/2. This oper- 
ator is a self-adjoint operator with an infinite sequence of eigenvalues X i ,  and their 
associated eigenvectors q5i. 
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The functions $i are given by normalizing multiples of 

where the vi are the successive zeros of tanh(v.ir12) + tan(v.irl2) and ai = cosh(vi.ir/2) 
and bi = cos(vi.ir/2). The corresponding X are given by Xi = v j , i  > 0. Of course, 
Xo = 0, with the corresponding $0 = 1. (Recall that the eigenfunction (x - .ir/2) is 
ruled out by the symmetry condition.) The functions {#i, i 2 0) are an orthonormal 
basis for the Hilbert space X = L2(0, n) n {functions even about ~ 1 2 ) .  

If we are interested in periodic solutions of periodic 2 r l k  of the partial differential 
equation, we will look in the space HI, = X, $ L:(0,2n/k) n {functions even in 
t).  By our earlier remarks, we have an orthonormal basis of this space given by 
a,,, = #,(x) cosknt ,m,n 2 0 with associated eigenvalues A,,,. The unbounded 
operator L is a self-adjoint operator on the space HI, and the functions @,,,(x, t) = 
$,(x) cos knt, m,  n > 0 are eigenfunctions of L with eigenvalues A,,, = -k2n2. Note 
that an easy calculation gives that the vi rapidly approach 2m - 112,m = 1 ,2 , .. . , 
and thus the A,,, rapidly approach (2(m - 114))~- k2n2 . 

Some comments about the model are in order at this stage. If we assume that 
there is no forcing term f then (31) has a unique steady state solution, u(x, t)  = c la  
and this is globally attracting. If f is small and the solution u of (4) is of the same 
order of magnitude as f (i.e., we are not in a situation of linear resonance), then to 
solve (4) we need only solve the linear equation 

(35) Utt + U,,,, + 6Ut + aU = c + f (x, t). 

Therefore, we can find periodic solutions of (31) simply by finding the well- 
understood solutions of the linear equation. These solutions will be (away from 
resonance) of the form c la  + fi, where fi is of the same order of magnitude as the 
forcing term f (x, t). This is what we would call the intuitively obvious solution: a 
small forcing term results in a small perturbation about equilibrium. 

However, if the forcing is small, then we can ask two related nonlinear questions: 
first, is this the only periodic motion and, if other periodic solutions exist, are they 
stable? 

As the reader should suspect by now, other solutions exist, and they appear to 
be stable. 

4.2. An abstract theorem. Let R be a bounded domain in En, let H denote 
a real Hilbert space which is a closed subspace of L2(R) where we denote the usual 
L2-inner product by ( , ). Let L : D(L) & H + H be a self-adjoint operator. We 
shall discuss an abstract operator equation 

which we shall later relate to the differential equation. 
We make the following assumptions: 
Assumption 1. 

(37) Dim Ker(L) = 1 and Kernel (L) = {sGo I s E 8). 

Assumption 2. b > 0, c > 0 and there exists $1 E H with $1 not = 0 such that 
L$l = -a$1, where 0 < a < b. 
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Assumption 3. There exists a number d > 0 such that if ( s ( 5d, then for all 
X E R  

Assumption 4. There exist numbers r l  and r 2  with 

such that if V is the two-dimensional subspace of H spanned by 7/10 and L1 is the 
restriction of L to the invariant subspace V-' of H and 01 denotes the spectrum of 
L1, then 

Using Assumptions 1and 3, we find by inspection the obvious solution u= ~ $ ~ / b  
of (35). The following result gives us two more solutions which are less obvious. 

THEOREM4.1. Under Assumptions 14, there exist solutions ul and u2 of (35) 
such that (ul ,  $1) > 0, (u2, $1) < 0. 

Proof. See [36]. 
PROBLEM which is necessary to the method of 12. Can the restriction rl < -b, 

proof, but not natural to the result, be removed? Also, since the restriction rl < -b 
is a limitation of the method of proof, we might expect more than four solutions when 
rl > -b. 

For example, we take the beam to be of length .ir, then the space V will be 
spanned by the constants (which are the go) and the function will be given 
by &(x) cos(3t), with corresponding eigenvalue -3.86122036. The next negative 
eigenvalue corresponds to cos(3t), and is 9.0. Here we define L to be the oper- 
ator Lu = utt + u,,,, (with free-end boundary conditions) defined on the space 
H3 = closure span of {&(x) cos 3nt, m 2 1,n > 0). Thus, we are looking for pe- 
riodic solutions of (31) which are even in t ,  even about the midpoint of the beam, 
and periodic of period 27r. Therefore, what the main theorem of the previous section 
shows is that if 3.86122036 < b < 9.0, (31) has at least two large amplitude oscillatory 
solutions with a nonzero component of period 2n/3. It is a standard result that if 
0 < b < 3.86122036, then (31) has at most one solution, the obvious u= c/b. Thus, 
when -b crosses the eigenvalue -3.86122036, we create additional solutions for a wide 
range of values of b. 

4.3. Some numerical results. We discuss numerical solutions of (31). To 
study the equation numerically, we will search for periodic solutions in a fairly naive 
way, by solving the initial value problem for various initial values and allowing the so- 
lution to run for large time. If there is a unique periodic solution, then it is reasonable 
to hope that after large time, the solution will have converged to it. We emphasize 
that we have little interest in the intermediate values of the solution to the initial 
value problem, only the eventual long-time behavior. 

We solve the equation 

(39) Utt + U,,,, + O.OlUt + 18U' = 10 + f (x, t)  

under a variety of assumptions on the interval, on f ,  and on the initial values. Our 
method of solution is to use the finite-difference method, implicit in the linear part and 
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(b) 
F I G .  15. The amplitude-frequency response after large time, for solving the initial value problem 
with large ( a )  or small (b) initial deflections, for (39) with free-end boundary conditions. 

explicit in the nonlinear part 18U+ and in the forcing term. After considerable exper- 
imentation it was found that this method gave best agreement with analytic results 
(where available) and also gave the best results when meshsizes were considerably 
reduced as a control on accuracy. 

Our forcing term was generally of the form ( A  sinyt)F(x), which is the form of a 
standing wave. Thus, for fixed F(x) ,  we would continuously vary X and y over a wide 
range of values and study the long-term solutions. 

A natural choice of F(x)  would be cos(2~x/L) ,  which would induce a two-node 
flexing with maximum bending about the midpoint, as long as the oscillation remained 
in the linear range. The picture is the same as for the bridge, and is fully detailed in 
1361... 

Figure 15 shows the resulting magnitude of large and small initial data, after 
the initial value problem has been solved for large time. Large amplitude nonlinear 
oscillation is present over a wide range of X and y. The forcing term f (x,t )  is taken 
to be Xcos(2~xlL) sin(yt). The amplitude of the large-time solution is shown as a 
function of X and y.  The parameter y varies from left to  right, in increments of 0.2, 
from 0.2 to 7.0. For small A,  the two solutions appear to agree, except below linear 
resonance. For A greater than 0.2, convergence to different amplitude solutions is 
indicated for large initial values. For p above resonance, the large amplitude solutions 
are actually motions of frequency half that of the forcing term. 

Perhaps the most startling thing about some of these oscillations is the form 
they sometimes take, as shown in Fig. 16, with an asymmetry in the solutions, no 
longer being a flexing about the midpoint, but showing a distinct preference for one 
end. Over many different experiments, we found this type of solution occurring, with 
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F I G .  16. A finite difference solution to (38) ,  with the forcing t e r n  f ( x , t )  taken to be 
X c o s ( 3 ~ x / L )cos(p t ) .  Wi th  large initial conditions, the finite difference solution converges to a 
large scale flexing which favors one end. This should be compared to the account of the destruction 
of the Orion. 

either end emerging as the preferred end. It seems as if a form of symmetry-breaking 
occurs, with the symmetric periodic solution presumably becoming unstable. 

PROBLEM13. Show that unsymmetric solutions exist for the unforced problem. 
Investigate this as an occurrence of symmetry-breaking. 

4.4. Some remarks on the naval architecture literature. In this section, 
we review three separate cases from the literature which do seem to confirm some of 
our findings. We summarize our principle findings as follows: 

1. Decreasing the frequency away from resonance may have the effect of increas- 
ing the amplitude of the oscillation. 

2. 	Large amplitude and small amplitude periodic flexings may coexist for the 
same forcing term; an unusual combination of conditions may result in chang- 
ing from one to the other. 

3. 	Over a wide range of frequency, as soon as the nonlinear effects of deck- 
wetting or lifting out of the water occur, oscillations which favor one end may 
occur. 

4. 	Large symmetric periodic flexings may occur in which the bending moment 
is quite small at the midpoint but becomes large at two points some distance 
from the midpoint. 

In [2], one situation similar to our first principle was observed. In a sea state 
Beaufort 7, on an ore-carrier being observed for just this purpose, the ship was en- 
countering conditions which induced slamming at a certain rate. When the speed and 
direction of the ship was changed to almost half the rate of slamming, the measured 
whipping stress in the ship was almost doubled. The author comments, "This odd 
behavior of the whipping stress ought be mentioned." We emphasize that this is not 
the exact situation of our paper, since the ship was apparently partially lifting out of 
the water as well as partially submerging. 

The case of the destruction of the Orion,which we mentioned at the beginning of 
this section, provides further evidence for our conclusions 1 and 2. The standard sea- 
going practice of reducing the frequency by slowing down was put into effect. Indeed 
the ship immediately halved its speed. This did not stop the oscillation, and indeed, 
it may have made it worse. Furthermore, the oscillation was clearly favoring one end, 
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F I G .  17. T h e  non l inear  fEexing induced by  a forcing t e r m  of t h e  type X c o s ( 2 ~ x / L )  c o s ( p t ) .  I n  t he  
non l inear  range, t h e  greatest bending m o m e n t  occurs a t  t w o  points approximately  equidistant f rom 
the  mid-point .  T h e  E d m u n d  Fitzgerald broke a t  such  points.  

since only the front of the ship was hammering on the sea bed. 
The case of the loss of the Edmund Fitzgerald is at least suggestive. This ship, in 

heavy seas on Lake Superior, vanished with large loss of life. In [59], it was concluded 
that 

the proximate cause of the loss of the Edmund Fitzgerald cannot be 
determined . . . the end was so rapid and catastrophic that there was 
no time to warn the crew, . . . , or even to make a distress call. 

The report goes on to make conjectures that relate to the ship being slowly 
waterlogged without the crew being aware of it although, apparently, the pumps were 
working. 

Finally, as the storm reached its peak intensity, so much freeboard 
was lost that the bow pitched down, and dove into a wall of water, 
and the vessel was unable to recover. Within a matter of seconds, the 
cargo rushed forward, the bow plowed into the bottom of the lake, 
and the midship's structure disintegrated. 

We believe that it is at least as likely (rather than the "wall-of-water" theory) 
that the ship went into a large-scale flexing motion which was mistaken by the crew 
for normal free rigid motion in very heavy seas. (The visibility was extremely low.) 
This would also account for one of the most puzzling aspects of the case, namely why 
the ship was not broken at its midpoint but at two points approximately 80 feet from 
the midpoint. This is precisely what would happen if the ship was oscillating in the 
mode shown in Figs. 16 and 17. 

5. Some concluding remarks. In this review, we have seen an area go from 
one of basically pure interest to one of significant applied and engineering interest. We 
start with some abstract existence results. These results, in turn, are confirmed by 
the numerical calculations, which suggest both new theorems, and new applications 
of engineering interest. 

Finally, these results make suggestions about how large structures should be con- 
structed, or how ships should be handled at sea. 

Our belief is that there will be many other applications of this type of analysis. 
For example, the semilinear beam equation that we have used for bridges and ships 
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also has occurred in the civil engineering literature, when the deflections of a railroad 
track were studied [37].  

We also expect more progress on the application of current research in Hamilto- 
nian systems to system problems of the sort which arose in the bridge section, where 
we have barely scratched the surface. 

Finally, we expect that in the future some of these results will have application 
in the study of electric circuits, where most of the present work treats capacitors as 
linear, even though they are inherently nonlinear. 
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8, 9, 11, and 12 was done by Steve Martino, Carolyn Lebenski, and Joseph Tokarski as 
part of their research experience as undergraduates at the University of Connecticut. 
We would like to thank Paul Davis, who produced the initial impetus for this paper. 

Note added in proof. It has been pointed out to us that we have not cited a 
recent paper in the engineering literature, "Suspension bridge vibration: continuum 
formulation" by Ahmed M. Abdel-Ghaffer in the Journal of Engineering Mechanics 
division, Proc. of A.S.C.E., 108 (1982), pp. 1215-1232. This paper derives nonlinear 
equations for suspension bridge vibrations. 

There are problems. Before deriving the equations, the author assumes that 
sine = 8, (where 0 is the angle of torsion), assumes that the main cables satisfy 
the linear (small amplitude) vibrating string equation, and assumes that the hanger 
cables behave like rigid incompressible rods. (In the Tacoma Narrows Bridge, they 
were seen alternately to loosen and tighten.) These assumptions are not explicitly 
mentioned in the text, but are implicit in the derivation. 

The author then derives "the coupled equation of motion in their most general 
and nonlinear form." Initial values or conditions are never mentioned in the paper. 
Boundary values are never specified in the variational formulation. No nonlinear 
behavior of the solutions is investigated. 
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