Introduction to Series Practice Problems

1. Let $a_{n}=\frac{2 n}{3 n+1}$.
(a) Determine whether the sequence $\left\{a_{n}\right\}$ converges or diverges.
(b) Determine whether the series $\sum_{n=1}^{\infty} a_{n}$ converges or diverges.
2. Show that the series

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{5 n^{2}+4}
$$

diverges.
3. Show that the series

$$
\sum_{n=1}^{\infty} \frac{n+1}{2 n-3}
$$

diverges.
4. Show that the series

$$
\sum_{k=1}^{\infty} \frac{k(k+2)}{(k+3)^{2}}
$$

diverges.
5. Show that the series

$$
\sum_{n=2}^{\infty} \frac{2}{n^{2}-1}
$$

converges, and find the sum.
6. Show that the series

$$
\sum_{n=1}^{\infty} \frac{2}{n^{2}+4 n+3}
$$

converges, and find the sum.
7. Show that the series

$$
\sum_{n=1}^{\infty} \frac{3}{n(n+3)}
$$

converges, and find the sum.
8. Suppose that the n-th partial sum of a series $\sum_{n=1}^{\infty} a_{n}$ is $S_{n}=\frac{n-1}{n+1}$. Find a_{n} and $\sum_{n=1}^{\infty} a_{n}$.
9. Suppose that $\sum_{n=1}^{\infty} a_{n}\left(a_{n} \neq 0\right)$ is known to converge. Explain why $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ diverges.

