Math 333
 January 31, 2008
 Linear Equations: A Second Approach Integrating Factors for Linear Equations

Consider again the first-order linear differential equation

$$
\begin{equation*}
\frac{d y}{d t}=a(t) y+b(t) \tag{1}
\end{equation*}
$$

Previously, we developed a guessing technique for solving such equations. Here, we'll develop a more general analytic technique.

1. First, rewrite the original DE in Eqn. (1) as

$$
\begin{equation*}
\frac{d y}{d t}+g(t) y=b(t) \tag{2}
\end{equation*}
$$

where $g(t)=-a(t)$.
2. Note that the left-hand side of Eqn. (2) above almost looks like the product rule. Remember that the product rule says that

$$
\frac{d(\mu(t) y(t))}{d t}=\mu(t) \frac{d y}{d t}+\frac{d \mu}{d t} y(t)
$$

3. Next, multiply both sides of the original DE in Eqn. (2) by $\mu(t)$. Then we have:

$$
\begin{equation*}
\mu(t) \frac{d y}{d t}+\mu(t) g(t) y=\mu(t) b(t) \tag{3}
\end{equation*}
$$

Note that the left-hand side of this equation looks even more like the derivative of a product.
4. Now, assume that we have found a function $\mu(t)$ such that

$$
\frac{d(\mu(t) y(t))}{d t}=\mu(t) \frac{d y}{d t}+\mu(t) g(t) y
$$

Then the DE in Eqn. (3) becomes

$$
\frac{d(\mu(t) y(t))}{d t}=\mu(t) b(t)
$$

which we can solve by integrating both sides:

$$
y(t)=\frac{1}{\mu(t)} \int \mu(t) b(t) d t
$$

5. Conclusion: If we can fund a function $\mu(t)$ such that

$$
\begin{equation*}
\frac{d(\mu(t) y(t))}{d t}=\mu(t) \frac{d y}{d t}+\mu(t) g(t) y \tag{4}
\end{equation*}
$$

then we can solve the original differential equation.
6. So, now we must determine how to find such a function $\mu(t)$. If we rewrite Eqn. (4) above using the product rule, we obtain:

$$
\begin{equation*}
\mu(t) \frac{d y}{d t}+\frac{d \mu}{d t} y(t)=\mu(t) \frac{d y}{d t}+\mu(t) g(t) y \tag{5}
\end{equation*}
$$

7. Thus, $\mu(t)$ must satisfy

$$
\frac{d \mu}{d t}=\mu(t) g(t)
$$

which we can rewrite as

$$
\mu(t)=e^{\int g(t) d t} .
$$

Summary. To solve the differential equation

$$
\frac{d y}{d t}+g(t) y=b(t)
$$

perform the following steps.

1. Compute the integrating factor

$$
\mu(t)=e^{\int g(t) d t}
$$

2. Multiply both sides of the original DE by $\mu(t)$ and integrate. Then

$$
y(t)=\frac{1}{\mu(t)} \int \mu(t) b(t) d t
$$

Note. This method requires the calculation of two integrals, so we may not, in general, be able to find a general formula for $y(t)$ that does not contain integrals.

Example. Find the general solution of

$$
\frac{d y}{d t}=-\frac{y}{t}+2 .
$$

Example. Find the general solution of

$$
\frac{d y}{d t}=(\sin t) y+4
$$

