Improper Integrals

There are two types of improper integrals that we will consider: integrals that involve infinite intervals and integrals that involve a discontinuous (unbounded) integrand.

Infinite Intervals

(a) If $\int_{a}^{t} f(x) d x$ exists for every number $t \geq a$, then

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

provided this limit exists (as a finite number).
(b) If $\int_{t}^{b} f(x) d x$ exists for every number $t \leq b$, then

$$
\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
$$

provided this limit exists (as a finite number).
The improper integrals $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{b} f(x) d x$ are called convergent if the corresponding limit exists and divergent if the limit does not exist.
(c) If both $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{a} f(x) d x$ are convergent, then we define

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

In part (c) any real number a can be used.

Examples.

1. Determine whether the integral $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is convergent or divergent. If it is convergent, evaluate the integral. Interpret this result in terms of area.
2. Determine whether the integral $\int_{1}^{\infty} \frac{1}{x} d x$ is convergent or divergent. If it is convergent, evaluate the integral. Interpret this result in terms of area.
3. Determine whether the integral $\int_{1}^{\infty} \frac{4}{x^{3}} d x$ is convergent or divergent. If it is convergent, evaluate the integral. Interpret this result in terms of area.
4. The p-test for convergence of integrals. For which (if any) values of p does $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converge?
5. Evaluate $\int_{-\infty}^{1} 2 e^{2 x} d x$.
6. Evaluate $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$.

Integrands that contain a discontinuity (unbounded integrand)

(a) If f is continuous on $[a, b)$ and is discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

if this limit exists (as a finite number).
(b) If f is continuous on $(a, b]$ and is discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

if this limit exists (as a finite number).
The improper integral $\int_{a}^{b} f(x) d x$ is called convergent if the corresponding limit exists and divergent if the limit does not exist.
(c) If f has a discontinuity at c, where $a<c<b$, and both $\int_{a}^{c} f(x) d x$ and $\int_{c}^{b} f(x) d x$ are convergent, then we define

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Examples.

Determine whether each integral is convergent or divergent. If it is convergent, evaluate the integral.

1. $\int_{0}^{1} \frac{1}{\sqrt[3]{x}} d x$
2. $\int_{2}^{5} \frac{1}{\sqrt{x-2}} d x$
3. $\int_{0}^{3} \frac{1}{x-1} d x$
4. Find the area of the region $S=\left\{(x, y):-2<x \leq 0\right.$ and $\left.0 \leq \frac{1}{\sqrt{x+2}}\right\}$.
