Why does the harmonic series diverge?

We have seen in class (using the Integral Test or the p-Test for Series) that the harmonic series

$$
\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots
$$

diverges. This is a particularly interesting result since $\lim _{k \rightarrow \infty} \frac{1}{k}=0$, i.e. we have a sequence $\left\{a_{k}\right\}$ such that $\lim _{k \rightarrow \infty} a_{k}=0$ but $\sum_{k=1}^{\infty} a_{k}$ diverges. This means that

$$
\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots
$$

becomes infinitely large. The following argument illustrates why this happens. We'll look at the partial sums

$$
S_{n}=\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
$$

and show that $S_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

$$
\begin{aligned}
S_{1} & =1 \\
S_{2} & =1+\frac{1}{2} \\
S_{4} & =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1+\frac{2}{2} \\
S_{8} & =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \\
& >1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8} \\
& =1+\frac{3}{3}
\end{aligned}
$$

Similarly, $S_{16}>1+\frac{4}{2}, S_{32}>1+\frac{5}{2}, S_{64}>1+\frac{6}{2}$, and in general,

$$
S_{2^{n}}>1+\frac{n}{2}
$$

Thus, $S_{2^{n}} \rightarrow \infty$ as $n \rightarrow \infty$, so the series diverges.

