Geometric Series

Definition. A geometric series is a series of the form

$$
\sum_{k=0}^{\infty} a r^{k}=a+a r+a r^{2}+a r^{3}+\cdots
$$

where a and r are real numbers. The number a is called the leading term and r is called the ratio.

Example 1. $\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}=1+\frac{1}{2}+\frac{1}{4}+\cdots=2$ is a geometric series with leading term 1 and ratio $1 / 2$.

Partial sums of geometric series. Consider the geometric series

$$
\sum_{k=0}^{\infty} a r^{k}=a+a r+a r^{2}+a r^{3}+\cdots
$$

The partial sum S_{n} is given by

$$
S_{n}=a+a r+a r^{2}+\cdots+a r^{n} .
$$

Then

$$
r S_{n}=a r+a r^{2}+a r^{3}+a r^{4}+\cdots+a r^{n+1}
$$

Subtracting these equations, we obtain

$$
S_{n}-r S_{n}=a-a r^{n+1}
$$

Thus,

$$
S_{n}(1-r)=a\left(1-r^{n+1}\right),
$$

which we can simply to obtain a formula for S_{n} :

$$
S_{n}=a \frac{1-r^{n+1}}{1-r}
$$

We can use this formula to determine whether or not a given geometric series converges. Recall that a series converges if $\lim _{n \rightarrow \infty} S_{n}$ exists. For the geometric series, we have

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} a \frac{1-r^{n+1}}{1-r}
$$

Recall that

$$
\lim _{n \rightarrow \infty} r^{n}= \begin{cases}0 & \text { if }|r|<1 \\ 1 & \text { if } r=1 \\ \text { does not exist } & \text { if }|r|>1 \text { or } r=-1\end{cases}
$$

Thus, we can conclude the following:

$$
\lim _{n \rightarrow \infty} S_{n}= \begin{cases}\frac{a}{1-r} & \text { if }|r|<1 \\ \text { does not exist } & \text { if }|r| \geq 1\end{cases}
$$

Theorem: Convergence and divergence of geometric series. The geometric series

$$
\sum_{k=0}^{\infty} a r^{k}=a+a r+a r^{2}+a r^{3}+\cdots
$$

- converges to $\frac{a}{1-r}$ if $|r|<1$ and
- diverges if $|r| \geq 1$

Example 2. Use the geometric series formula to show that

$$
\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}
$$

converges and is equal to 2 .
Example 3. Does the series

$$
5-\frac{10}{3}+\frac{20}{9}-\frac{40}{27}+\cdots
$$

converge or diverge? If the series converges, find its value.
Example 4. Does the series

$$
\sum_{k=0}^{\infty} \frac{1+2^{n}}{3^{n}}
$$

converge or diverge? If the series converges, find its value.
Example 5. Does the series

$$
\sum_{n=0}^{\infty} 2^{2 n} 3^{1-n}
$$

converge or diverge? If the series converges, find its value.

