Math 333
 Fundamental Solutions Second-Order Linear Differential Equations Thursday, February 14, 2008

We've talked about how to solve some differential equations of the form

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

where a, b, and c are constants. In particular, we've learned how to find the general solution of the DE in Eqn. (1) when the characteristic equation

$$
a r^{2}+b r+c=0
$$

has real and distinct roots (also called eigenvalues, or characteristic values).
Next, we'll consider the mathematical details regarding second order linear homogeneous differential equations in more generality. We'll use the theory that we develop here to construct solutions of the second-order homogeneous linear differential equation with constant coefficients for the cases in which the characteristic equation has either a pair of complex conjugate roots or a real double root.

We'll begin with an existence and uniqueness theorem. Given an arbitrary secondorder linear differential equation, it's natural to ask whether or not we are certain that a solution must exist. Moreover, if a solution does exist, are we guaranteed that it's the only one? The existence and uniqueness theorem addresses these questions.

Existence and Uniqueness Theorem (EUT) for Second-Order Linear Dif-

 ferential Equations. Consider the initial-value problem$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

where $p(t), q(t)$, and $g(t)$ are continuous on an open interval I that contains the point t_{0}. Then there is exactly one solution $y(t)$ of this problem, and the solution exists throughout the interval I.

Example 1. Find the longest interval in which the solution of the initial-value problem

$$
\left(t^{2}-3 t\right) y^{\prime \prime}+t y^{\prime}-(t+3) y=0, \quad y(1)=2, \quad y^{\prime}(1)=1
$$

is certain to exist. Solution. The longest open interval containing the initial point $t=1$ in which the solution is guaranteed to exist is $0<t<3$.

Example 2. Find the unique solution of the IVP

$$
y^{\prime \prime}+t^{2} y^{\prime}+\sin (t) y=0, \quad y(3)=0, \quad y^{\prime}(3)=0
$$

Solution. The function $y(t)=0$ satisfies the DE and the initial conditions. By the Uniqueness Theorem, it is the only solution of the given IVP.

The Linearity Principle. Suppose that y_{1} and y_{2} are two solutions of the homogeneous differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

Then the linear combination

$$
y(t)=k_{1} y_{1}+k_{2} y_{2}
$$

is also a solution for any values of the constants k_{1} and k_{2}.
Proof. Check that $y(t)=k_{1} y_{1}+k_{2} y_{2}$ indeed satisfies the DE.
Definition. Consider the general second order linear homogeneous differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Suppose that y_{1} and y_{2} are solutions of Eqn. (2). The Wronskian of the solutions y_{1} and y_{2} is the determinant

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} .
$$

We need the Wronskian for the following result.
Theorem. Suppose that y_{1} and y_{2} are two solutions of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

and that there is a point t_{0} where the Wronskian

$$
W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}
$$

is not zero. Then the family of solutions

$$
y(t)=k_{1} y_{1}(t)+k_{2} y_{2}(t)
$$

with arbitrary constants k_{1} and k_{2} includes every solution of the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

This theorem states that as long as the Wronskian of y_{1} and y_{2} is not everywhere zero, then the linear combination

$$
y(t)=k_{1} y_{1}+k_{2} y_{2}
$$

is the general solution of the second-order linear homogeneous differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 .
$$

Definition. The solutions y_{1} and y_{2} with a nonzero Wronskian are said to form a fundamental set of solutions for the DE $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.

Example 1. Suppose that r_{1} and r_{2} are two real, distinct roots of the characteristic equation $a r^{2}+b r+c=0$. Show that $y_{1}=e^{r_{1} t}$ and $y_{2}=e^{r_{2} t}$ form a fundamental set of solutions for the second order homogeneous linear DE with constant coefficients $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Example 2. Show that $y_{1}(t)=t^{1 / 2}$ and $y_{2}(t)=t^{-1}$ form a fundamental set of solutions of

$$
y^{\prime \prime}+\frac{3}{2 t} y^{\prime}-\frac{1}{2 t^{2}} y=0, \quad t>0 .
$$

Summary. We can summarize the discussion in this section as follows. Suppose that we want to find the general solution of the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, \quad \alpha<t<\beta .
$$

We first find two functions y_{1} and y_{2} that satisfy the DE for $\alpha<t<\beta$. Then, we must make sure that there is a point in the interval $[\alpha, \beta]$ where the Wronskian $W\left(y_{1}, y_{2}\right)$ is nonzero (i.e. we must check that the Wronskian $W\left(y_{1}, y_{2}\right)$ is not identically zero). Then y_{1} and y_{2} form a fundamental set of solutions of the DE and the general solution is

$$
y(t)=k_{1} y_{1}(t)+k_{2} y_{2}(t)
$$

where k_{1} and k_{2} are arbitrary constants.

