Math 333
 Homework 8 Solutions Forced Harmonic Oscillators

Note: This homework is due in class on Tuesday, April 1, 2008.

1. Consider the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+20 y=3+2 \cos (2 t) .
$$

(a) Find the general solution of the differential equation.

Solution. $y(t)=k_{1} e^{-2 t} \sin (4 t)+k_{2} e^{-2 t} \cos (4 t)+\frac{1}{10} \cos (2 t)+\frac{1}{20} \sin (2 t)+\frac{3}{20}$
(b) Discuss the long-term behavior of solutions of the equation.

Solution. As $t \rightarrow \infty, y(t)$ approaches the steady-state solution $y_{p}(t)=$ $\frac{1}{10} \cos (2 t)+\frac{1}{20} \sin (2 t)+\frac{3}{20}$.
2. Consider the differential equation

$$
y^{\prime \prime}+6 y^{\prime}+8 y=-4 \cos (3 t) .
$$

(a) Find the general solution of the differential equation.

Solution. $y(t)=k_{1} e^{-4 t}+k_{2} e^{-2 t}+\frac{4}{325} \cos (3 t)-\frac{72}{325} \sin (3 t)$
(b) Discuss the long-term behavior of solutions of the equation.

Solution. As $t \rightarrow \infty, y(t)$ approaches the steady-state solution $y_{p}(t)=$ $\frac{4}{325} \cos (3 t)-\frac{72}{325} \sin (3 t)$
3. Consider the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+y=2 \cos (2 t) .
$$

(a) Find the general solution of the differential equation.

Solution. $y(t)=k_{1} e^{-t}+k_{2} t e^{-t}-\frac{6}{25} \cos (2 t)+\frac{8}{25} \sin (2 t)$
(b) Discuss the long-term behavior of solutions of the equation.

Solution. As $t \rightarrow \infty, y(t)$ approaches the steady-state solution $y_{p}(t)=$ $-\frac{6}{25} \cos (2 t)+\frac{8}{25} \sin (2 t)$

